## bridgelux.

## Bridgelux CSP 2727 Series

Product Data Sheet DS956

The Bridgelux Chip Scale Package (CSP) 2727 LED offers exceptional performance in an ultra compact size. This CSP LED is hot-color targeted which ensures that the LEDs fall within their specified color bin at the typical application conditions of $85^{\circ} \mathrm{C}$. With its superior performance without bonding wires and ability to assemble a densely populated and high luminous flux LED board, the CSP 2727 provides unparalleled design-in flexibility for indoor and outdoor lighting applications. The CSP 2727 is ideal as a drop in replacement for emitters with an industry standard $2.7 \mathrm{~mm} x$ 2.7 mm footprint.

## Features

- Competitive efficacy and lumen per dollar
- Industry-standard 2727 footprint, 1-sided emitter
- Excellent color maintenance
- Compatible with SMT
- Superior luminous flux at maximum current for reduced LED count
- Hot-color targeting ensures that color is within the ANSI bin at the typical application conditions of $85^{\circ} \mathrm{C}$
- Enables 3- and 5-step MacAdam ellipse custom binning kits
- 120 degrees viewing angle
- Multiple CCT and CRI configurations for a wide range of lighting applications


## Benefits

- Lower operating and manufacturing cost
- Ease of design and rapid go-to-market
- Uniform consistent white light
- Reliable and constant white point
- Environmentally friendly, complies with standards
- Design flexibility


## Contents

| Product Feature Map | 2 |
| :--- | :--- |
| Product Nomenclature | 2 |
| Product Test Conditions | 2 |
| Product Selection Guide | 3 |
| Performance at Commonly Used Drive Currents | 5 |
| Electrical and Thermal Characteristics | 9 |
| Absolute Maximum Ratings | 10 |
| Product Bin Definitions | 11 |
| Performance Curves | 14 |
| Typical Radiation Pattern | 17 |
| Typical Color Spectrum | 18 |
| Mechanical Dimensions | 19 |
| Reflowing Characteristics | 20 |
| Design Resources | 21 |
| Precautions | 21 |
| Disclaimers | 21 |
| About Bridgelux | 22 |

## Product Feature Map

Bridgelux CSP LED products offer exceptional
performance and color quality all in a highly reliable, cost effective, compact package. Our CSP products come in industry standard package sizes and follow ANSI binning standards.

These LEDs are optimized for cost and performance, helping to ensure highly competitive system lumen per dollar performance while addressing the stringent efficacy and reliability standards required for modern lighting applications.

## Product Nomenclature

The part number designation for Bridgelux CSP 2727 is explained as follows:


## Product Test Conditions

Bridgelux CSP 2727 LEDs are tested and binned with a 10 ms pulse of 700 mA at $\mathrm{T}_{\mathrm{j}}$ (junction temperature) $=\mathrm{T}_{\text {sp }}$ (solder point temperature) $=85^{\circ} \mathrm{C}$. Luminous flux, color and forward voltage are binned at $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\text {sp }}=85^{\circ} \mathrm{C}$,

## Product Selection Guide

The following product configurations are available:
Table 1: Selection Guide, Pulsed Measurement Data at $700 \mathrm{~mA}\left(\mathrm{~T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{sp}}=25^{\circ} \mathrm{C}\right)$

| Part Number ${ }^{1,6}$ | Nominal CCT ${ }^{2}$ <br> (K) | $\mathrm{CRI}^{3,5}$ | Nominal Drive Current (mA) | Forward Voltage ${ }^{4,5}$ <br> (V) |  |  | Typical Pulsed Flux ${ }^{4,5}$ (Im) | Typical Power (W) | Typical <br> Efficacy <br> (lm/W) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typical | Max |  |  |  |
| BXCP-27C-11H-J27-3-A1-00-0-0 | 2700 | 70 | 700 | 2.70 | 2.90 | 3.20 | 331 | 2.0 | 163 |
| BXCP-30C-11H-J27-3-A1-00-0-0 | 3000 | 70 | 700 | 2.70 | 2.90 | 3.20 | 353 | 2.0 | 174 |
| BXCP-40C-11H-J27-3-A1-00-0-0 | 4000 | 70 | 700 | 2.70 | 2.90 | 3.20 | 385 | 2.0 | 190 |
| BXCP-50C-11H-J27-3-A1-00-0-0 | 5000 | 70 | 700 | 2.70 | 2.90 | 3.20 | 385 | 2.0 | 190 |
| BXCP-57C-11H-J27-3-A1-00-0-0 | 5700 | 70 | 700 | 2.70 | 2.90 | 3.20 | 385 | 2.0 | 190 |
| BXCP-65C-11H-J27-3-A1-00-0-0 | 6500 | 70 | 700 | 2.70 | 2.90 | 3.20 | 385 | 2.0 | 190 |
| BXCP-27E-11H-J27-3-A1-00-0-0 | 2700 | 80 | 700 | 2.70 | 2.90 | 3.20 | 299 | 2.0 | 147 |
| BXCP-30E-11H-J27-3-A1-00-0-0 | 3000 | 80 | 700 | 2.70 | 2.90 | 3.20 | 316 | 2.0 | 156 |
| BXCP-40E-11H-J27-3-A1-00-0-0 | 4000 | 80 | 700 | 2.70 | 2.90 | 3.20 | 342 | 2.0 | 168 |
| BXCP-50E-11H-J27-3-A1-00-0-0 | 5000 | 80 | 700 | 2.70 | 2.90 | 3.20 | 342 | 2.0 | 168 |
| BXCP-57E-11H-J27-3-A1-00-0-0 | 5700 | 80 | 700 | 2.70 | 2.90 | 3.20 | 342 | 2.0 | 168 |
| BXCP-65E-11H-J27-3-A1-00-0-0 | 6500 | 80 | 700 | 2.70 | 2.90 | 3.20 | 342 | 2.0 | 168 |

Notes for Table 1:

1. The last 6 characters (including hyphens ${ }^{\prime-}-$ ) refer to nominal flux, nominal forward voltage, and color bins, respectively. "00-0-0" denotes the full distribution of flux, forward voltage, and 5 SDCM color.

Example: BXCP-40C-11H-J27-3-A1-00-0-0 refers to the full distribution of flux, forward voltage, and color within a 4000K 5-step ANSI standard chromaticity region with a minimum of 70 CRI .
2. Product CCT is hot targeted at $\mathrm{T}_{\mathrm{sp}}=85^{\circ} \mathrm{C}$. Nominal CCT as defined by ANSI C78.377-2011.
3. Listed CRIs are minimum values and include test tolerance.
4. Products tested under pulsed condition ( 10 ms pulse width) at nominal drive current where $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{sp}}=25^{\circ} \mathrm{C}$.
5. Bridgelux maintains a $\pm 7.5 \%$ tolerance on luminous flux measurements, $\pm 0.1 \mathrm{~V}$ tolerance on forward voltage measurements, and $\pm 2$ tolerance on $C R$ measurements for the CSP.
6. Refer to Table 6 and Table 7 for Luminous Flux Binning and Forward Voltage Binning information.

## Product Selection Guide

Table 2: Selection Guide, Pulsed Measurement Data at $700 \mathrm{~mA}\left(\mathrm{~T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{sp}}=85^{\circ} \mathrm{C}\right)$

| Part Number ${ }^{1,5}$ | Nominal CCT ${ }^{2}$ <br> (K) | CRI3,4 | Nominal Drive Current (mA) | Forward Voltage ${ }^{4}$ (V) |  |  | Typical Pulsed Flux ${ }^{4}$ (Im) | Typical Power (W) | Typical <br> Efficacy $\text { ( } \mathrm{Im} / \mathrm{W} \text { ) }$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typical | Max |  |  |  |
| BXCP-27C-11H-J27-3-A1-00-0-0 | 2700 | 70 | 700 | 2.60 | 2.80 | 3.00 | 301 | 2.0 | 154 |
| BXCP-30C-11H-J27-3-A1-00-0-0 | 3000 | 70 | 700 | 2.60 | 2.80 | 3.00 | 321 | 2.0 | 164 |
| BXCP-40C-11H-J27-3-A1-00-0-0 | 4000 | 70 | 700 | 2.60 | 2.80 | 3.00 | 350 | 2.0 | 179 |
| BXCP-50C-11H-J27-3-A1-00-0-0 | 5000 | 70 | 700 | 2.60 | 2.80 | 3.00 | 350 | 2.0 | 179 |
| BXCP-57C-11H-J27-3-A1-00-0-0 | 5700 | 70 | 700 | 2.60 | 2.80 | 3.00 | 350 | 2.0 | 179 |
| BXCP-65C-11H-J27-3-A1-00-0-0 | 6500 | 70 | 700 | 2.60 | 2.80 | 3.00 | 350 | 2.0 | 179 |
| BXCP-27E-11H-J27-3-A1-00-0-0 | 2700 | 80 | 700 | 2.60 | 2.80 | 3.00 | 272 | 2.0 | 139 |
| BXCP-30E-11H-J27-3-A1-00-0-0 | 3000 | 80 | 700 | 2.60 | 2.80 | 3.00 | 288 | 2.0 | 147 |
| BXCP-40E-11H-J27-3-A1-00-0-0 | 4000 | 80 | 700 | 2.60 | 2.80 | 3.00 | 311 | 2.0 | 159 |
| BXCP-50E-11H-J27-3-A1-00-0-0 | 5000 | 80 | 700 | 2.60 | 2.80 | 3.00 | 311 | 2.0 | 159 |
| BXCP-57E-11H-J27-3-A1-00-0-0 | 5700 | 80 | 700 | 2.60 | 2.80 | 3.00 | 311 | 2.0 | 159 |
| BXCP-65E-11H-J27-3-A1-00-0-0 | 6500 | 80 | 700 | 2.60 | 2.80 | 3.00 | 311 | 2.0 | 159 |

## Notes for Table 2:

1. The last 6 characters (including hyphens '-') refer to nominal flux, nominal forward voltage, and color bins, respectively. "00-0-0" denotes the full distribution of flux, forward voltage, and 5 SDCM color.
Example: BXCP-40C-11H-J27-3-A1-00-0-0 refers to the full distribution of flux, forward voltage, and color within a 4000 K 5 -step ANSI standard chromaticity region with a minimum of 70 CRI.
2. Product CCT is hot targeted at $\mathrm{T}_{\mathrm{sp}}=85^{\circ} \mathrm{C}$. Nominal CCT as defined by ANSI C78.377-2011.
3. Listed CRIs are minimum values and include test tolerance.
4. Bridgelux maintains $a \pm 7.5 \%$ tolerance on luminous flux measurements, $\pm 0.1 \mathrm{~V}$ tolerance on forward voltage measurements, and $\pm 2$ tolerance on CRI measurements for the CSP.
5. Refer to Table 6 and Table 7 for Luminous Flux Binning and Forward Voltage Binning information.
6. Products tested under pulsed condition ( 10 ms pulse width) at nominal drive current where $\mathrm{Tj}=\mathrm{Tsp}=85 \boxtimes^{\circ} \mathrm{C}$.

## Performance at Commonly Used Drive Currents

CSP 2727 LEDs specifications at nominal drive current are shown in Table 1 and Table 2. CSP 2727 may also be driven at other drive currents dependent on specific application design requirements. The performance at any drive current can be derived from the current vs. voltage characteristics shown in Figure 2 and the relative luminous flux vs. current characteristics shown in Figure 3. The performance at commonly used drive currents is summarized in Table 3.

Table 3: Performance at Commonly Used Drive Currents

| Part Number | CRI | Drive Current ${ }^{1}$ (mA) | $\begin{aligned} & \text { Typical } \mathrm{V}_{\mathrm{f}} \\ & \mathrm{~T}_{\mathrm{sp}}=25^{\circ} \mathrm{C} \\ & \text { (V) } \end{aligned}$ | Typical Power $\mathrm{T}_{\mathrm{sp}}=25^{\circ} \mathrm{C}$ <br> (W) | Typical Pulsed Flux ${ }^{2}$ $\begin{gathered} \mathrm{T}_{\mathrm{sp}}=25^{\circ} \mathrm{C} \\ \text { (Im) } \end{gathered}$ | Typical Pulsed Flux ${ }^{3}$ $\begin{gathered} \mathrm{T}_{\mathrm{sp}}=85^{\circ} \mathrm{C} \\ (\mathrm{~lm}) \end{gathered}$ | Typical Efficacy $\begin{gathered} \mathrm{T}_{\text {sp }}=25^{\circ} \mathrm{C} \\ (\operatorname{lm} / \mathrm{W}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BXCP-27C-11H-J27-3-A1-00-0-0 | 70 | 50 | 2.6 | 0.1 | 26 | 23 | 196 |
|  |  | 200 | 2.7 | 0.5 | 102 | 93 | 189 |
|  |  | 350 | 2.8 | 1.0 | 174 | 158 | 180 |
|  |  | 700 | 2.9 | 2.0 | 331 | 301 | 163 |
|  |  | 1000 | 3.0 | 3.0 | 454 | 413 | 151 |
|  |  | 1200 | 3.1 | 3.7 | 534 | 486 | 145 |
|  |  | 1500 | 3.2 | 4.7 | 641 | 584 | 135 |
|  |  | 1800 | 3.3 | 5.9 | 753 | 685 | 128 |
|  |  | 2000 | 3.3 | 6.7 | 810 | 737 | 122 |
| BXCP-30C-11H-J27-3-A1-00-0-0 | 70 | 50 | 2.6 | 0.1 | 27 | 25 | 209 |
|  |  | 200 | 2.7 | 0.5 | 109 | 99 | 201 |
|  |  | 350 | 2.8 | 1.0 | 186 | 169 | 192 |
|  |  | 700 | 2.9 | 2.0 | 353 | 321 | 174 |
|  |  | 1000 | 3.0 | 3.0 | 484 | 440 | 161 |
|  |  | 1200 | 3.1 | 3.7 | 569 | 518 | 155 |
|  |  | 1500 | 3.2 | 4.7 | 684 | 623 | 144 |
|  |  | 1800 | 3.3 | 5.9 | 803 | 731 | 137 |
|  |  | 2000 | 3.3 | 6.7 | 863 | 786 | 130 |
| BXCP-40C-11H-J27-3-A1-00-0-0 | 70 | 50 | 2.6 | 0.1 | 30 | 27 | 228 |
|  |  | 200 | 2.7 | 0.5 | 118 | 108 | 220 |
|  |  | 350 | 2.8 | 1.0 | 202 | 184 | 209 |
|  |  | 700 | 2.9 | 2.0 | 385 | 350 | 190 |
|  |  | 1000 | 3.0 | 3.0 | 527 | 480 | 176 |
|  |  | 1200 | 3.1 | 3.7 | 621 | 565 | 169 |
|  |  | 1500 | 3.2 | 4.7 | 746 | 679 | 157 |
|  |  | 1800 | 3.3 | 5.9 | 876 | 797 | 149 |
|  |  | 2000 | 3.3 | 6.7 | 941 | 857 | 141 |

Notes for Table 3:

1. Alternate drive currents in Table 3 are provided for reference only and are not a guarantee of performance.
2. Bridgelux maintains $a \pm 7.5 \%$ tolerance on flux measurements.
3. Typical pulsed performance values are provided as reference only and are not a guarantee of performance.

## Performance at Commonly Used Drive Currents

Table 3: Performance at Commonly Used Drive Currents (Continued)

| Part Number | CRI | Drive Current ${ }^{1}$ (mA) | $\begin{aligned} & \text { Typical } V_{f} \\ & \mathrm{~T}_{\text {sp }}=25^{\circ} \mathrm{C} \\ & (\mathrm{~V}) \end{aligned}$ | Typical Power $\mathrm{T}_{\mathrm{sp}}=25^{\circ} \mathrm{C}$ <br> (W) | Typical Pulsed Flux ${ }^{2}$ $\begin{gathered} \mathrm{T}_{\text {sp }}=25^{\circ} \mathrm{C} \\ \quad(\mathrm{Im}) \end{gathered}$ | Typical Pulsed Flux ${ }^{3}$ $\begin{gathered} \mathrm{T}_{\text {sp }}=85^{\circ} \mathrm{C} \\ \text { (Im) } \end{gathered}$ | Typical Efficacy $\begin{gathered} \mathrm{T}_{\mathrm{sp}}=25^{\circ} \mathrm{C} \\ (\mathrm{Im} / \mathrm{W}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BXCP-50C-11H-J27-3-A1-00-0-0 | 70 | 50 | 2.6 | 0.1 | 30 | 27 | 228 |
|  |  | 200 | 2.7 | 0.5 | 118 | 108 | 220 |
|  |  | 350 | 2.8 | 1.0 | 202 | 184 | 209 |
|  |  | 700 | 2.9 | 2.0 | 385 | 350 | 190 |
|  |  | 1000 | 3.0 | 3.0 | 527 | 480 | 176 |
|  |  | 1200 | 3.1 | 3.7 | 621 | 565 | 169 |
|  |  | 1500 | 3.2 | 4.7 | 746 | 679 | 157 |
|  |  | 1800 | 3.3 | 5.9 | 876 | 797 | 149 |
|  |  | 2000 | 3.3 | 6.7 | 941 | 857 | 141 |
| BXCP-57C-11H-J27-3-A1-00-0-0 | 70 | 50 | 2.6 | 0.1 | 30 | 27 | 228 |
|  |  | 200 | 2.7 | 0.5 | 118 | 108 | 220 |
|  |  | 350 | 2.8 | 1.0 | 202 | 184 | 209 |
|  |  | 700 | 2.9 | 2.0 | 385 | 350 | 190 |
|  |  | 1000 | 3.0 | 3.0 | 527 | 480 | 176 |
|  |  | 1200 | 3.1 | 3.7 | 621 | 565 | 169 |
|  |  | 1500 | 3.2 | 4.7 | 746 | 679 | 157 |
|  |  | 1800 | 3.3 | 5.9 | 876 | 797 | 149 |
|  |  | 2000 | 3.3 | 6.7 | 941 | 857 | 141 |
| BXCP-65C-11H-J27-3-A1-00-0-0 | 70 | 50 | 2.6 | 0.1 | 30 | 27 | 228 |
|  |  | 200 | 2.7 | 0.5 | 118 | 108 | 220 |
|  |  | 350 | 2.8 | 1.0 | 202 | 184 | 209 |
|  |  | 700 | 2.9 | 2.0 | 385 | 350 | 190 |
|  |  | 1000 | 3.0 | 3.0 | 527 | 480 | 176 |
|  |  | 1200 | 3.1 | 3.7 | 621 | 565 | 169 |
|  |  | 1500 | 3.2 | 4.7 | 746 | 679 | 157 |
|  |  | 1800 | 3.3 | 5.9 | 876 | 797 | 149 |
|  |  | 2000 | 3.3 | 6.7 | 941 | 857 | 141 |

Notes for Table 3:

1. Alternate drive currents in Table 3 are provided for reference only and are not a guarantee of performance.
2. Bridgelux maintains $a \pm 7.5 \%$ tolerance on flux measurements.
3. Typical pulsed performance values are provided as reference only and are not a guarantee of performance.

## Performance at Commonly Used Drive Currents

Table 3: Performance at Commonly Used Drive Currents (Continued)

| Part Number | CRI | Drive Current ${ }^{1}$ (mA) | $\begin{aligned} & \text { Typical } \mathrm{V}_{\mathrm{f}} \\ & \mathrm{~T}_{\mathrm{sp}}=25^{\circ} \mathrm{C} \\ & (\mathrm{~V}) \end{aligned}$ | Typical Power $\mathrm{T}_{\mathrm{sp}}=25^{\circ} \mathrm{C}$ <br> (W) | Typical Pulsed Flux ${ }^{2}$ $\begin{gathered} \mathrm{T}_{\mathrm{sp}}=25^{\circ} \mathrm{C} \\ \text { (lm) } \end{gathered}$ | Typical Pulsed Flux ${ }^{3}$ $\mathrm{T}_{\mathrm{sp}}=85^{\circ} \mathrm{C}$ (Im) | Typical Efficacy $\begin{gathered} \mathrm{T}_{\mathrm{sp}}=25^{\circ} \mathrm{C} \\ (\mathrm{Im} / \mathrm{W}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BXCP-27E-11H-J27-3-A1-00-0-0 | 80 | 50 | 2.6 | 0.1 | 23 | 21 | 178 |
|  |  | 200 | 2.7 | 0.5 | 92 | 84 | 171 |
|  |  | 350 | 2.8 | 1.0 | 157 | 143 | 163 |
|  |  | 700 | 2.9 | 2.0 | 299 | 272 | 147 |
|  |  | 1000 | 3.0 | 3.0 | 410 | 373 | 137 |
|  |  | 1200 | 3.1 | 3.7 | 482 | 439 | 131 |
|  |  | 1500 | 3.2 | 4.7 | 580 | 527 | 122 |
|  |  | 1800 | 3.3 | 5.9 | 681 | 619 | 116 |
|  |  | 2000 | 3.3 | 6.7 | 732 | 666 | 110 |
| BXCP-30E-11H-J27-3-A1-00-0-0 | 80 | 50 | 2.6 | 0.1 | 24 | 22 | 188 |
|  |  | 200 | 2.7 | 0.5 | 97 | 89 | 181 |
|  |  | 350 | 2.8 | 1.0 | 167 | 152 | 172 |
|  |  | 700 | 2.9 | 2.0 | 316 | 288 | 156 |
|  |  | 1000 | 3.0 | 3.0 | 434 | 395 | 145 |
|  |  | 1200 | 3.1 | 3.7 | 511 | 465 | 139 |
|  |  | 1500 | 3.2 | 4.7 | 614 | 559 | 129 |
|  |  | 1800 | 3.3 | 5.9 | 721 | 656 | 123 |
|  |  | 2000 | 3.3 | 6.7 | 775 | 705 | 116 |
| BXCP-40E-11H-J27-3-A1-00-0-0 | 80 | 50 | 2.6 | 0.1 | 26 | 24 | 203 |
|  |  | 200 | 2.7 | 0.5 | 105 | 96 | 195 |
|  |  | 350 | 2.8 | 1.0 | 180 | 164 | 186 |
|  |  | 700 | 2.9 | 2.0 | 342 | 311 | 168 |
|  |  | 1000 | 3.0 | 3.0 | 469 | 426 | 156 |
|  |  | 1200 | 3.1 | 3.7 | 551 | 502 | 150 |
|  |  | 1500 | 3.2 | 4.7 | 663 | 603 | 140 |
|  |  | 1800 | 3.3 | 5.9 | 778 | 708 | 132 |
|  |  | 2000 | 3.3 | 6.7 | 836 | 761 | 126 |

Notes for Table 3:

1. Alternate drive currents in Table 3 are provided for reference only and are not a guarantee of performance.
2. Bridgelux maintains $a \pm 7.5 \%$ tolerance on flux measurements.
3. Typical pulsed performance values are provided as reference only and are not a guarantee of performance.

## Performance at Commonly Used Drive Currents

Table 3: Performance at Commonly Used Drive Currents (Continued)

| Part Number | CRI | Drive Current ${ }^{1}$ (mA) | $\begin{aligned} & \text { Typical } \mathrm{V}_{\mathrm{f}} \\ & \mathrm{~T}_{\mathrm{sp}}=25^{\circ} \mathrm{C} \\ & (\mathrm{~V}) \end{aligned}$ | Typical Power $\mathrm{T}_{\mathrm{sp}}=25^{\circ} \mathrm{C}$ <br> (W) | Typical Pulsed Flux ${ }^{2}$ $\begin{gathered} \mathrm{T}_{\mathrm{sp}}=25^{\circ} \mathrm{C} \\ \text { (lm) } \end{gathered}$ | Typical Pulsed Flux ${ }^{3}$ $\mathrm{T}_{\mathrm{sp}}=85^{\circ} \mathrm{C}$ (Im) | Typical Efficacy $\begin{gathered} \mathrm{T}_{\mathrm{sp}}=25^{\circ} \mathrm{C} \\ (\mathrm{Im} / \mathrm{W}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BXCP-50E-11H-J27-3-A1-00-0-0 | 80 | 50 | 2.6 | 0.1 | 26 | 24 | 203 |
|  |  | 200 | 2.7 | 0.5 | 105 | 96 | 195 |
|  |  | 350 | 2.8 | 1.0 | 180 | 164 | 186 |
|  |  | 700 | 2.9 | 2.0 | 342 | 311 | 168 |
|  |  | 1000 | 3.0 | 3.0 | 469 | 426 | 156 |
|  |  | 1200 | 3.1 | 3.7 | 551 | 502 | 150 |
|  |  | 1500 | 3.2 | 4.7 | 663 | 603 | 140 |
|  |  | 1800 | 3.3 | 5.9 | 778 | 708 | 132 |
|  |  | 2000 | 3.3 | 6.7 | 836 | 761 | 126 |
| BXCP-57E-11H-J27-3-A1-00-0-0 | 80 | 50 | 2.6 | 0.1 | 26 | 24 | 203 |
|  |  | 200 | 2.7 | 0.5 | 105 | 96 | 195 |
|  |  | 350 | 2.8 | 1.0 | 180 | 164 | 186 |
|  |  | 700 | 2.9 | 2.0 | 342 | 311 | 168 |
|  |  | 1000 | 3.0 | 3.0 | 469 | 426 | 156 |
|  |  | 1200 | 3.1 | 3.7 | 551 | 502 | 150 |
|  |  | 1500 | 3.2 | 4.7 | 663 | 603 | 140 |
|  |  | 1800 | 3.3 | 5.9 | 778 | 708 | 132 |
|  |  | 2000 | 3.3 | 6.7 | 836 | 761 | 126 |
| BXCP-65E-11H-J27-3-A1-00-0-0 | 80 | 50 | 2.6 | 0.1 | 26 | 24 | 203 |
|  |  | 200 | 2.7 | 0.5 | 105 | 96 | 195 |
|  |  | 350 | 2.8 | 1.0 | 180 | 164 | 186 |
|  |  | 700 | 2.9 | 2.0 | 342 | 311 | 168 |
|  |  | 1000 | 3.0 | 3.0 | 469 | 426 | 156 |
|  |  | 1200 | 3.1 | 3.7 | 551 | 502 | 150 |
|  |  | 1500 | 3.2 | 4.7 | 663 | 603 | 140 |
|  |  | 1800 | 3.3 | 5.9 | 778 | 708 | 132 |
|  |  | 2000 | 3.3 | 6.7 | 836 | 761 | 126 |

Notes for Table 3:

1. Alternate drive currents in Table 3 are provided for reference only and are not a guarantee of performance.
2. Bridgelux maintains $a \pm 7.5 \%$ tolerance on flux measurements.
3. Typical pulsed performance values are provided as reference only and are not a guarantee of performance.

## Electrical and Thermal Characteristics

Table 4: Electrical and Thermal Characteristics

| Part Number ${ }^{1}$ | Drive Current (mA) | Forward Voltage ${ }^{2,3}$ <br> (V) |  |  | Typical Temperature Coefficient of Forward Voltage ${ }^{4}$ $\Delta V_{1} / \Delta T$ $\left(\mathrm{mV} /{ }^{\circ} \mathrm{C}\right.$ ) | Typical <br> Thermal <br> Resistance Junction to Solder Point ${ }^{5,6}$ $R_{j-s p}\left({ }^{\circ} C / W\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Minimum | Typical | Maximum |  |  |
| BXCP-xxx-11H-J27-3-A1-00-0-0 | 700 | 2.60 | 2.80 | 3.00 | -1.0 | 0.5 |

Notes for Table 4:

1. The last 6 characters (including hyphens '-') refer to nominal flux, nominal forward voltage, and color bins, respectively. "00-0-0" denotes the full distribution of flux, forward voltage, and 5 SDCM color.

Example: BXCP-40C-11H-J27-3-A1-00-0-0 refers to the full distribution of flux, forward voltage, and color within a 4000 K 5 -step ANSI standard chromaticity region with a minimum of 70 CRI .
2. Products tested under pulsed condition ( 10 ms pulse width) where $\mathrm{T}_{\mathrm{sp}}=85^{\circ} \mathrm{C}$.
3. Bridgelux maintains a tolerance of $\pm 0.1 \mathrm{~V}$ on forward voltage measurements.
4. Products measured between $25^{\circ} \mathrm{C}$ and $105 \boxtimes^{\circ} \mathrm{C}$ under pulsed condition ( 10 ms pulse width).
5. Thermal resistance value is based on 4000 K 70 CRI product.
6. Thermal resistance value was calculated using total electrical input power; optical power was not subtracted from input power.

## Absolute Maximum Ratings

Table 5: Maximum Ratings

| Parameter | Maximum Rating |
| :---: | :---: |
| LED Junction Temperature ( $\mathrm{T}_{\mathrm{j}}$ ) | $135^{\circ} \mathrm{C}$ |
| Storage Temperature | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Operating Solder Point Temperature ( $\mathrm{T}_{\text {Sp }}$ ) | $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ |
| Soldering Temperature | $260^{\circ} \mathrm{C}$ or lower for a maximum of 10 seconds |
| Maximum Drive Current ${ }^{1}$ | 2000 mA |
| Maximum Peak Pulsed Forward Current ${ }^{2}$ | 2800 mA |
| Maximum Reverse Voltage ${ }^{3}$ | -5V |
| Moisture Sensitivity Rating | MSL 3 |
| Electrostatic Discharge | 2kV HBM. JEDEC-JS-001-HBM and JEDEC-JS-001-2012 |

Notes for Table 5:

1. Maximum drive current depends on Tsp. Please refer to Figure 7.
2. Bridgelux recommends a maximum duty cycle of $10 \%$ and pulse width of 10 ms when operating CSP LED at maximum peak pulsed current specified. Maximum peak pulsed currents indicate values where CSP LED can be driven without catastrophic failures.
3. Light emitting diodes are not designed to be driven in reverse voltage and will not produce light under this condition. Maximum rating provided for reference only.

## Product Bin Definitions

Table 6 lists the standard photometric luminous flux bins for Bridgelux CSP 2727 LEDs. Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all CCTs.

Table 6: Luminous Flux Bin Definitions at $700 \mathrm{~mA}, \mathrm{~T}_{\mathrm{sp}}=85^{\circ} \mathrm{C}$

| Bin Code | Minimum | Maximum | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: |
| D9 | 310 | 330 |  |  |
| F6 | 330 | 350 |  |  |
| F7 | 350 | 370 |  | $\mathrm{I}_{\mathrm{F}}=700 \mathrm{~mA}$ |

Note for Table 6:

1. Bridgelux maintains a tolerance of $\pm 7.5 \%$ on luminous flux measurements.

Table 7: Forward Voltage Bin Definition at $700 \mathrm{~mA}, \mathrm{~T}_{\mathrm{sp}}=85^{\circ} \mathrm{C}$

| Bin Code | Minimum | Maximum | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: |
| C | 2.6 | 2.8 | V |  |
| D | 2.8 | 3.0 | I | $=700 \mathrm{~mA}$ |

## Note for Table 7:

1. Bridgelux maintains a tolerance of $\pm 0.1 \mathrm{~V}$ on forward voltage measurements.

## Product Bin Definitions

Table 8: 3- and 5-step MacAdam Ellipse Color Bin Definitions ( $\mathrm{T}_{\text {sp }}=85^{\circ} \mathrm{C}$ )

| Table 8:3-and 5-s tep M acA dam E lipse C o br B in D effitions ( $\mathrm{T} \mathrm{sp}=85^{\circ} \mathrm{C}$ ) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CCT | Color Space | Cen | Point | Major Axis | minor Axis | $\theta^{\prime}$ (angle) | Color Bin |
|  |  | x | y |  |  |  |  |
| 2700K | 3 | 0.4578 | 0.4101 | 0.0081 | 0.0042 | 53.70 | 3 |
|  | 5 |  |  | 0.0135 | 0.0070 |  | 5 |
| 3000K | 3 | 0.4338 | 0.4030 | 0.0083 | 0.0041 | 53.22 | 3 |
|  | 5 |  |  | 0.0139 | 0.0068 |  | 5 |
| 4000K | 3 | 0.3818 | 0.3797 | 0.0094 | 0.0040 | 53.72 | 3 |
|  | 5 |  |  | 0.0157 | 0.0067 |  | 5 |
| 5000K | 3 | 0.3447 | 0.3553 | 0.0082 | 0.0035 | 59.62 | 3 |
|  | 5 |  |  | 0.0137 | 0.0059 |  | 5 |
| 5700K | 3 | 0.3287 | 0.3417 | 0.0075 | 0.0032 | 59.09 | 3 |
|  | 5 |  |  | 0.0124 | 0.0053 |  | 5 |
| 6500K | 3 | 0.3123 | 0.3282 | 0.0067 | 0.0029 | 58.57 | 3 |
|  | 5 |  |  | 0.0112 | 0.0048 |  | 5 |

Note for Table 8
1..Bridgelux maintains a tolerance of $\pm 0.007$ on x and y color coordinates in the CIE 1931 color space
2. MacAdam Ellipse Color bin code for $\mathrm{CRI}<90: 3$ (3 SDCM)/ 5(5 SDCM).

## Product Bin Definitions

Figure 1: C.I.E. 1931 Chromaticity Diagram ( Color Bin Structure, $\mathrm{T}_{\mathrm{sp}}=85^{\circ} \mathrm{C}$ )



## Performance Curves

Figure 2: Drive Current vs. Voltage ( $\left.\mathrm{T}_{\mathrm{sp}}=85^{\circ} \mathrm{C}\right)$


Figure 3: Typical Relative Luminous Flux vs. Drive Current $\left(\mathrm{T}_{\text {sp }}=85^{\circ} \mathrm{C}\right)$


Note for Figure 3:

1. Bridgelux does not recommend driving this CSP LED at low current $(\boxtimes<20 \mathrm{~mA})$. Doing so may produce unpredictable results. Pulse width modulation (PWM) is recommended for dimming effects.

## Performance Curves

Figure 4: Typical Relative Flux vs. Solder Point Temperature_700mA


Figure 5: Typical ccy Shift vs. Solder Point Temperature_700mA


Notes for Figures $4 \& 5$ :
1..Characteristics shown for neutral white based on 4000 K and 70 CRI.

2 .For other color SKUs, the shift in color will vary. Please contact your Bridgelux Sales Representative for more information.

## Performance Curves

Figure 6: Typical ccx Shift vs. Solder Point Temperature_700mA


Notes for Figure 6:

1. Characteristics shown for neutral white based on 4000 K and 70 CRI .
2. For other color SKUs, the shift in color will vary. Please contact your Bridgelux Sales Representative for more information.

Figure 7: Drive Current vs Solder Point Temperature


## Typical Radiation Pattern

Figure 8: Typical Spatial Radiation Pattern at $700 \mathrm{~mA}, \mathrm{~T}_{\text {sp }}=25^{\circ} \mathrm{C}$


Notes for Figure 8:

1. Typical viewing angle is $120^{\circ}$.
2. The viewing angle is defined as the off axis angle from the centerline where $I v$ is $1 / 2$ of the peak value.

Figure 9: Typical Polar Radiation Pattern at $700 \mathrm{~mA}, \mathrm{~T}_{\mathrm{sp}}=25^{\circ} \mathrm{C}$


## Typical Color Spectrum

Figure 10: Typical Color Spectrum at $700 \mathrm{~mA}, \mathrm{Tsp}=85 \boxed{\nabla^{\circ} \mathrm{C}}$


Notes for Figure 10:

1. Color spectra measured at nominal current for $\mathrm{T}_{\text {sp }}=85^{\circ} \mathrm{C}$
2. Color spectra shown for neutral white is 4000 K and 70 CRI .

## Mechanical Dimensions

Figure 11: Drawing for CSP 2727


0. $34 \pm 0.07$


Notes for Figure 11:

1. Drawings are not to scale.
2. Drawing dimensions are in millimeters.
3. Unless otherwise specified, tolerances are $\pm 0.10 \mathrm{~mm}$.
4. The optical center of the LED emitter is nominally defined by the mechanical center of the emitter. The light emitting surface (LES) is centered on the mechanical center of the LED emitter to a tolerance of $\pm 0.2 \mathrm{~mm}$

## Recommended PCB Soldering Pad Pattern



## Reflowing Characteristics

Figure 12 : Reflow Profile


| Profile Feature | Lead Free Assembly |
| :---: | :---: |
| Preheat:Temperature Range | $180^{\circ} \mathrm{C}-200^{\circ} \mathrm{C}$ |
| Preheat:Time (Maximum) | 120 seconds |
| Peak Temperature | $260^{\circ} \mathrm{C}$ |
| Soldering Time (Maximum) | 10 seconds |
| Allowable Reflow Cycles | 2 |

## Design Resources

Optical Source Models
Please contact your Bridgelux sales representative for assistance.

## Precautions

## CAUTION: CHEMICAL EXPOSURE HAZARD

Exposure to some chemicals commonly used in luminaire manufacturing and assembly can cause damage to the CSP.

## CAUTION: EYE SAFETY

Eye safety classification for the use of Bridgelux CSP is in accordance with IEC specification 62471: Photobiological Safety of Lamps and Lamp Systems.
Most Bridgelux CSPs are classified as Risk Group Exempt or Risk Group 1 in accordance with IEC specification 62471. However, the CSP LEDs will be classified as Risk Group 2 when operated at high power conditions with high ratio blue wavelength in the emission spectrum depending on characteristics. Please use appropriate precautions. It is important that employees working with LEDs are trained to use them safely.

## CAUTION: RISK OF BURN

Do not touch the CSP LES during operation. Allow the CSP to cool for a sufficient period of time before handling. The CSP may reach elevated temperatures such that could burn skin when touched.

## CAUTION: PICK AND PLACE

Recommend using Teflon material for nozzle. Sharp steel material must not be used as pick up tools.

## CAUTION



## Disclaimers

## MINOR PRODUCT CHANGE POLICY

The rigorous qualification testing on products offered by Bridgelux provides performance assurance. Slight cosmetic changes that do not affect form, fit, or function may occur as Bridgelux continues product optimization.

## STANDARD TEST CONDITIONS

Unless otherwise stated, LED emitter testing is performed at the nominal drive current.

## About Bridgelux: Bridging Light and Life ${ }^{\text {TM }}$

At Bridgelux, we help companies, industries and people experience the power and possibility of light. Since 2002, we've designed LED solutions that are high performing, energy efficient, cost effective and easy to integrate. Our focus is on light's impact on human behavior, delivering products that create better environments, experiences and returns-both experiential and financial. And our patented technology drives new platforms for commercial and industrial luminaires.

For more information about the company, please visit bridgelux.com
twitter.com/Bridgelux
facebook.com/Bridgelux
WeChat ID: BridgeluxInChina


46410 Fremont Boulevard
Fremont, CA 94538 U.S.A.
Tel (925) 583-8400
www.bridgelux.com

