Introduction

Vesta™ Series Dim-To-Warm Array products deliver adaptable light in a cost-effective, solid state lighting package. Vesta™ Series products tap into the powerful mediums of light and color to influence experience, well-being, and human emotion. They allow fixture manufacturers to simulate the familiar glow and dimming of incandescent lamps. This high flux density light source is designed to support a wide range of high quality, low cost directional luminaires and replacement lamps for commercial and residential applications.

Lighting system designs incorporating these LED arrays deliver comparable performance to 150 Watt incandescent-based luminaires, while increasing system level efficacy and prolonging service life. Typical luminaire and lamp types appropriate for this family include replacement lamps, down lights, wall packs and accent, spot and track lights.

Features

- Dimming range from 3000K to 1800K
- Efficacy of 96-97 lm/W typical
- Uniform, high quality illumination
- Minimum 95 CRI option
- More energy efficient than incandescent, halogen and fluorescent lamps
- Industry standardized dimensions
- Flux packages from 570 to 1400 lumens typical

Benefits

- Superior color dimming transition
- Compact system design resulting from high lumen density
- High quality, true color reproduction
- Enhanced optical control
- Uniform, consistent white light
- Lower operating costs
- Reduced maintenance costs
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Feature Map</td>
<td>2</td>
</tr>
<tr>
<td>Product Nomenclature</td>
<td>2</td>
</tr>
<tr>
<td>Product Selection Guide</td>
<td>3</td>
</tr>
<tr>
<td>Electrical Characteristics</td>
<td>4</td>
</tr>
<tr>
<td>Absolute Maximum Ratings</td>
<td>5</td>
</tr>
<tr>
<td>Performance Curves</td>
<td>6</td>
</tr>
<tr>
<td>Typical Radiation Pattern</td>
<td>8</td>
</tr>
<tr>
<td>Typical Color Spectrum</td>
<td>9</td>
</tr>
<tr>
<td>Mechanical Dimensions</td>
<td>10</td>
</tr>
<tr>
<td>Color Binning Information</td>
<td>11</td>
</tr>
<tr>
<td>Packaging and Labeling</td>
<td>12</td>
</tr>
<tr>
<td>Design Resources</td>
<td>13</td>
</tr>
<tr>
<td>Precautions</td>
<td>13</td>
</tr>
<tr>
<td>Disclaimers</td>
<td>13</td>
</tr>
<tr>
<td>About Bridgelux</td>
<td>14</td>
</tr>
</tbody>
</table>
Bridgelux arrays are fully engineered devices that provide consistent thermal and optical performance on an engineered mechanical platform. The arrays incorporate several features to simplify design integration and assembly. Please visit www.bridgelux.com for more information on the Vesta Series Family of products.

Product Nomenclature

The part number designation for Bridgelux Vesta Series arrays is explained as follows:

- **Product Family**: BXRV
- **Dim-To-Warm Array**: DR
- **Nominal CCT**: 18 - 1,800K, 30 - 3,000K
- **Minimum CRI**: H - 95 CRI
- **Form Factor Designator**: 1000 - 9mm LES
- **Array Configuration**: A - 6W, B - 12W
- **CCT Bin Options**: 13 - 3 SDCM
- **Case Temperature (Tc) Measurement Point**
- **Polarity symbols**
- **Solder Pads**
- **White ring around LES**
- **Yellow phosphor Light Emitting Surface (LES)**
- **Designed to comply with global safety standards for creepage and clearance distances**
- **Note: Part number and lot codes are scribed on back of array**
The following product configurations are available:

Table 1: Selection Guide. Measurement Data ($T_j = T_c = 25^\circ\text{C}$)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Nominal CCT (K)</th>
<th>CRI</th>
<th>Drive Current (mA)</th>
<th>Typical V_T, $T_j=25^\circ\text{C}$ (V)</th>
<th>Typical Power $T_j=25^\circ\text{C}$ (W)</th>
<th>Typical Efficacy $T_j=25^\circ\text{C}$ (lm/W)</th>
<th>Typical Pulsed Flux $3, 4, 5$, $T_j=25^\circ\text{C}$ (lm)</th>
<th>Minimum Pulsed Flux $6, 7$, $T_j=25^\circ\text{C}$ (lm)</th>
<th>Typical DC Flux 7, $T_j=85^\circ\text{C}$ (lm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BXRV-DR-1830H-1000-A-13</td>
<td>3000</td>
<td>95</td>
<td>350</td>
<td>17.0</td>
<td>6.0</td>
<td>96</td>
<td>570</td>
<td>513</td>
<td>518</td>
</tr>
<tr>
<td></td>
<td>1800</td>
<td>95</td>
<td>14</td>
<td>11.2</td>
<td>0.2</td>
<td>83</td>
<td>13</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>BXRV-DR-1830H-1000-B-13</td>
<td>3000</td>
<td>95</td>
<td>350</td>
<td>33.8</td>
<td>11.8</td>
<td>97</td>
<td>1150</td>
<td>1035</td>
<td>1045</td>
</tr>
<tr>
<td></td>
<td>1800</td>
<td>95</td>
<td>14</td>
<td>26.9</td>
<td>0.4</td>
<td>82</td>
<td>31</td>
<td>-</td>
<td>28</td>
</tr>
</tbody>
</table>

Notes for Table 1:
1. Nominal CCT as defined by ANSI C78.377-2011.
2. CRI Values are minimums. Minimum R9 value for 95 CRI products is 85. Bridgelux maintains a ±3 tolerance on all R9 values.
3. Products tested under pulsed condition (10ms pulse width) at nominal test current where T_j (junction temperature) = T_c (case temperature) = 25°C.
4. Typical performance values are provided as a reference only and are not a guarantee of performance.
5. Bridgelux maintains a ±7% tolerance on flux measurements.
6. Minimum flux values at the nominal test current are guaranteed by 100% test.
7. Typical stabilized DC performance values are provided as reference only and are not a guarantee of performance.
8. Typical performance is estimated based on operation under DC (direct current) with LED array mounted onto a heat sink with thermal interface material and the case temperature maintained at 85°C. Based on Bridgelux test setup, values may vary depending on the thermal design of the luminaire and/or the exposed environment to which the product is subjected.
Electrical Characteristics

Table 2: Electrical Characteristics

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Drive Current (mA)</th>
<th>Forward Voltage Pulsed, (T_c = 25^\circ C) ((V))^1,2,3</th>
<th>Typical Coefficient of Forward Voltage (\Delta V_f/\Delta T_c) (mV/\degree C)</th>
<th>Typical Thermal Resistance Junction to Case (R_{jc}) (\degree C/W)</th>
<th>Driver Selection Voltages(^6) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Typical</td>
<td>Maximum</td>
<td>(V_f) Min. Hot (T_c = 105^\circ C) (V)</td>
<td>(V_f) Max. Cold (T_c = -40^\circ C) (V)</td>
</tr>
<tr>
<td>BXRV-DR-1830H-1000-A-13</td>
<td>350</td>
<td>15.5</td>
<td>17.0</td>
<td>18.5</td>
<td>-6.1</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>15.8</td>
<td>17.3</td>
<td>18.8</td>
<td>-6.1</td>
</tr>
<tr>
<td>BXRV-DR-1830H-1000-B-13</td>
<td>350</td>
<td>30.6</td>
<td>33.8</td>
<td>37.0</td>
<td>-12.1</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>31.2</td>
<td>34.4</td>
<td>37.6</td>
<td>-12.1</td>
</tr>
</tbody>
</table>

Notes for Table 2:
1. Parts are tested in pulsed conditions, \(T_c = 25^\circ C \). Pulse width is 10ms.
2. Voltage minimum and maximum are provided for reference only and are not a guarantee of performance.
3. Bridgelux maintains a tester tolerance of \(\pm 0.10\text{V} \) on forward voltage measurements.
4. Typical coefficient of forward voltage tolerance is \(\pm 0.1\text{mV} \) for nominal current.
5. Thermal resistance value was calculated using total electrical input power; optical power was not subtracted from input power. The thermal interface material used during testing is not included in the thermal resistance value.
6. \(V_f \) min hot and max cold values are provided as reference only and are not guaranteed by test. These values are provided to aid in driver design and selection over the operating range of the product.
Table 3: Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED Junction Temperature (T<sub>j</sub>)</td>
<td>125°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-40°C to +105°C</td>
</tr>
<tr>
<td>Operating Case Temperature<sup>1</sup> (T<sub>c</sub>)</td>
<td>105°C</td>
</tr>
<tr>
<td>Soldering Temperature<sup>2</sup></td>
<td>350°C or lower for a maximum of 10 seconds</td>
</tr>
<tr>
<td>Maximum Drive Current<sup>3</sup></td>
<td>420mA</td>
</tr>
<tr>
<td>Maximum Peak Pulsed Drive Current<sup>4</sup></td>
<td>600mA</td>
</tr>
<tr>
<td>Maximum Reverse Voltage<sup>5</sup></td>
<td>BXRV-DR-1830H-1000-A-13</td>
</tr>
<tr>
<td></td>
<td>BXRV-DR-1830H-1000-B-13</td>
</tr>
<tr>
<td></td>
<td>-30V</td>
</tr>
<tr>
<td></td>
<td>-60V</td>
</tr>
</tbody>
</table>

Notes for Table 3
1. For IEC 62717 requirement, please contact Bridgelux Sales Support.
2. See Bridgelux Application Note for more information.
3. Please refer to Figure 11 for drive current derating curve.
4. Bridgelux recommends a maximum duty cycle of 10% and pulse width of 20ms when operating LED arrays at the maximum peak pulsed current specified. Maximum peak pulsed currents indicate values where the LED array can be driven without catastrophic failures.
5. Light emitting diodes are not designed to be driven in reverse voltage and will not produce light under this condition. Maximum rating provided for reference only.
Performance Curves

Figure 1: 6W Forward Voltage vs. Forward Current, $T_c=25^\circ$C

Figure 2: 12W Forward Voltage vs. Forward Current, $T_c=25^\circ$C

Figure 3: 6W Relative Flux vs. Case Temperature

Figure 4: 12W Relative Flux vs. Case Temperature

Figure 5: 6W CCT vs. Forward Current, $T_c=25^\circ$C

Figure 6: 12W CCT vs. Forward Current, $T_c=25^\circ$C
Performance Curves

Figure 7: Relative LOP vs. Drive Current, $T_c=25^\circ$C

Figure 8: Color shift vs. Forward Current

Figure 9: Derating Curve
Figure 10: Typical Spatial Radiation Pattern

Notes for Figure 10:
1. Typical viewing angle is 110°.
2. The viewing angle is defined as the off axis angle from the centerline where Iv is 1/2 of the peak value.

Figure 11: Typical Polar Radiation Pattern
Figure 12: Typical Color Spectrum

Note for Figure 12:
1. Color spectra measured at nominal current for $T_j = T_c = 25°C$.

Graph showing the relative spectral power distribution for two different wavelengths, 1800K and 3000K, under different forward currents.
Mechanical Dimensions

Figure 13: Drawing for Vesta™ Dim-To-Warm 9mm Array

Notes for Figure 13:
1. Solder pads are labeled ‘+’ to denote positive polarity, and ‘-’ to denote negative polarity.
2. Drawings are not to scale.
3. Drawing dimensions are in millimeters.
4. Unless otherwise specified, tolerances are ± 0.10mm.
5. The optical center of the LED array is nominally defined by the mechanical center of the array. The light emitting surface (LES) is centered on the mechanical center of the array to a tolerance of ± 0.2 mm.
6. Bridgelux maintains a flatness of 0.1 mm across the mounting surface of the array. Refer to Application Notes for product handling, mounting and heat sink recommendations.
Color Binning Information

Figure 14: Graph of Warm White Test Bins in xy Color Space

Note: Pulsed Test Conditions, $T_c = 25^\circ$C

Table 4: Bin Coordinates and Associated Typical CCT

<table>
<thead>
<tr>
<th>Bin Code</th>
<th>3000K</th>
<th>1800K</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI Bin (for reference only)</td>
<td>(2870K - 3220K)</td>
<td>-</td>
</tr>
<tr>
<td>3 (3SDCM)</td>
<td>(2968K - 3136K)</td>
<td>-</td>
</tr>
<tr>
<td>5 (5SDCM)</td>
<td>-</td>
<td>(1735K - 1880K)</td>
</tr>
<tr>
<td>Center Point (x,y)</td>
<td>(0.4338, 0.403)</td>
<td>(0.5496, 0.4081)</td>
</tr>
</tbody>
</table>
Packaging and Labeling

Figure 15: Vesta™ Series Dim-To-Warm 9mm Packaging and Labeling

Notes for Figure 15:
1. Each tube holds 35 Vesta™ Series Dim-To-Warm 9mm arrays.
2. Two tubes are sealed in an anti-static bag. Ten such bags are placed in a box and shipped. Depending on quantities ordered, a bigger shipping box, containing four boxes, will be used to ship products.
3. Each bag and box is to be labeled as shown above.
4. Dimensions for each tube are 15.4 (W) x 8.3 (H) x 500 (L) mm. Dimensions for the anti-static bag are 75 (W) x 615 (L) x 3.1 (T) mm and that of a shipping box are 58.7 x 13.3 x 7.9 cm.

Figure 16: Product Labeling

Bridgelux arrays have laser markings on the back side of the substrate to help with product identification. In addition to the product identification markings, Bridgelux arrays also contain markings for internal Bridgelux manufacturing use only. The image below shows which markings are for customer use and which ones are for Bridgelux internal use only. The Bridgelux internal manufacturing markings are subject to change without notice; however, these will not impact the form, function or performance of the array.

Customer Use- 2D Barcode
Scannable barcode provides product part number and other Bridgelux internal production information.

Customer Use- Product part number

1830H10A 13

Internal Bridgelux use only.
Design Resources

Application Notes
Bridgelux has developed a comprehensive set of application notes and design resources to assist customers in successfully designing with the Vesta Series product family of LED array products. For a list of resources under development, visit www.bridgelux.com.

Optical Source Models
Optical source models and ray set files are available for all Bridgelux products. For a list of available formats, visit www.bridgelux.com.

3D CAD Models
Three dimensional CAD models depicting the product outline of all Bridgelux Vesta Series LED arrays are available in both IGES and STEP formats. Please contact your Bridgelux sales representative for assistance.

CAUTION: CHEMICAL EXPOSURE HAZARD
Exposure to some chemicals commonly used in luminaire manufacturing and assembly can cause damage to the LED array. Please consult Bridgelux Application Note for additional information.

CAUTION: EYE SAFETY
Eye safety classification for the use of Bridgelux Vesta Series is in accordance with IEC/TR62778: Application of IEC 62471 for the assessment of blue light hazard to light sources and luminaires. Vesta Series Dim-To-Warm arrays are classified as Risk Group 1 when operated at or below the maximum drive current. Please use appropriate precautions. It is important that employees working with LEDs are trained to use them safely.

CAUTION: RISK OF BURN
Do not touch the Vesta Series LED array during operation. Allow the array to cool for a sufficient period of time before handling. The Vesta Series LED array may reach elevated temperatures such that could burn skin when touched.

Disclaimers

STANDARD TEST CONDITIONS
Unless otherwise stated, array testing is performed at the nominal drive current.

MINOR PRODUCT CHANGE POLICY
The rigorous qualification testing on products offered by Bridgelux provides performance assurance. Slight cosmetic changes that do not affect form, fit, or function may occur as Bridgelux continues product optimization.

LM80
LM80 testing is ongoing. Please contact your Bridgelux sales representative for more information.
About Bridgelux: We Build Light That Transforms

At Bridgelux, we help companies, industries and people experience the power and possibility of light. Since 2002, we’ve designed LED solutions that are high performing, energy efficient, cost effective and easy to integrate. Our focus is on light’s impact on human behavior, delivering products that create better environments, experiences and returns—both experiential and financial. And our patented technology drives new platforms for commercial and industrial luminaires.

For more information about the company, please visit
bridgelux.com
twitter.com/Bridgelux
facebook.com/Bridgelux
youtube.com/user/Bridgelux
linkedin.com/company/bridgelux-inc-_2
WeChat ID: BridgeluxInChina