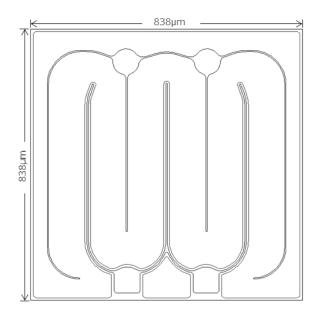
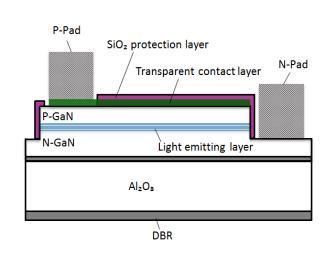


BXCD 35 mil x 35 mil

PRODUCT DATA SHEET DS-C44

The Bridgelux family of blue power die enables high performance and cost effective solutions to serve solid state lighting market. This next generation chip technology delivers improved efficiency and performance to enable increased light output for a variety of lighting, signaling and display applications.


Features


- High lumen output and efficiency
- Long operating life
- 100% Tested and sorted by wavelength, power and forward voltage
- Lambertian emission pattern
- Compatible with Solder paste, solder preform or silver epoxy die attach
- Delivered on medium tack blue tape (20cm±10mm ×20 cm±10mm)

Applications

- General Illumination
- Portable Lighting
- Architectural Lighting
- Directional Lighting
- Display Backlighting
- Digital Camera Flash
- Automotive Lighting
- White LEDs

LED Chip Diagram

BXCD 35 mil x 35 mil

Product Nomenclature

$\underline{\mathsf{B} \mathsf{X} \mathsf{C} \mathsf{D}} \ \underline{\mathsf{3535} \mathsf{X} \mathsf{X} \mathsf{X}} - \underline{\mathsf{Y}} - \underline{\mathsf{Z}}$

Where:

BXCD:	Designates product family
3535:	Designates die size (35 mil x 35 mil)
XXX:	Designates dominant wavelength bin

- Y: Designates radiometric power bin
- Z: Designates forward voltage bin

Part Numbering and Bin Definitions

Bridgelux LED chips are sorted into the brightness and dominant wavelength bins shown below at $I_f = 350$ mA. Each blue tape contains die from only one brightness bin and one wavelength bin.

The forward voltage bins are 3.0-3.1 V (A1), 3.1-3.2 V (A2), 3.2-3.3 V (B1), 3.3-3.4 V (B2), 3.4-3.5 V (C1), and 3.5-3.6 V (C2). The maximum forward voltage (V_f max) = 3.6 V.

Dominant Wavelength	Power Bin G1 (380 – 400 mW)	Power Bin G2 (400 – 420 mW)	Power Bin H1 (420 – 440 mW)
450 to 452.5nm	BXCD3535450-G1-z	BXCD3535450-G2-z	BXCD3535450-H1-z
452.5 to 455nm	BXCD3535452-G1-z	BXCD3535452- G2-z	BXCD3535452-H1-z
455 to 457.5nm	BXCD3535455-G1-z	BXCD3535455- G2-z	BXCD3535455-H1-z
457.5 to 460nm	BXCD3535457-G1-z	BXCD3535457- G2-z	BXCD3535457-H1-z
Dominant Wavelength	Power Bin H2 (440 – 460 mW)	Power Bin J1 (460 – 480 mW)	
200000			
Wavelength	(440 – 460 mW)	(460 – 480 mW)	
Wavelength 450 to 452.5nm	(440 – 460 mW) BXCD3535450-H2-z	(460 – 480 mW) BXCD3535450-J1-z	

Note: z = "A1" for Vf bin of 3.0-3.1 V; "A2" for Vf bin of 3.1-3.2 V; "B1" for Vf bin of 3.2-3.3 V; "B2" for Vf bin of 3.3-3.4 V; "C1" for Vf bin of 3.4-3.5 V z = "C2" for Vf bin of 3.5-3.6 V.

BXCD 35 mil x 35 mil

Mechanical Dimensions

Chip size	838(±30) μm ×838(±30) μm
Wafer thickness	150±10 μm
Pad Thickness	2.7±0.5 μm
Au Pad Diameter	Ρ: 80 μm / Ν: 80 μm

Absolute Maximum Ratings

Parameter	Symbol	Maximum Rating	Condition
Forward DC Current	l _f	700 mA ¹	T _a =25°C
Forward Voltage	V _f	3.6 V	l _f = 350 mA
Reverse voltage	Vr	-5V	T _a =25°C
Reverse Current	I _r	2.0 µA	$V_r = -5 V$
Junction Temperature	Tj	125⁰C	
Assembly Process Temp.		325°C for <5 seconds	
Storage Conditions (chip on tape	0°C to +40°C ambient, RH < 65%		

Notes:

- 1. Maximum drive current depends on junction temperature, die attach methods/materials, and lifetime requirements of the application.
- 2. Bridgelux LED chips are Class 1 ESD sensitive.
- 3. The typical spectra half-width of the BXCD3535 blue power die is < 25 nm.
- 4. Please consult the Bridgelux technical support team for information on how to optimize the light output of our chips in your package.
- 5. Brightness values are measured in an integrating sphere using gold plated TO39 headers without encapsulation.
- 6. Tapes should be stored in a vertical orientation, not horizontally stacked. Stacking of tapes can place excessive pressure on the bond pads of the LED, resulting in reduced wire bonding strength.

Environmental Compliance

Bridgelux is committed to providing environmentally friendly products to the solid state lighting market. Bridgelux BXCD3535 blue power die are compliant to the European Union directives on the restriction of hazardous substances in electronic equipment, namely the RoHS directive. Bridgelux will not intentionally add the following restricted materials to BXCD3535 die products: lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE).

Performance vs. Current

The following curves represent typical performance of the BXCD3535 blue power die. Actual performance will vary slightly for different power, dominant wavelength and Vf bins.

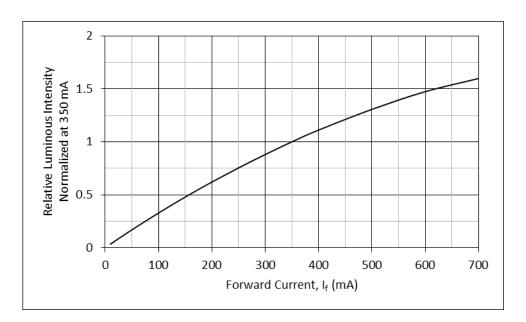


Figure 1: Relative Luminous Intensity vs. Forward Current (T_i = 25°C)

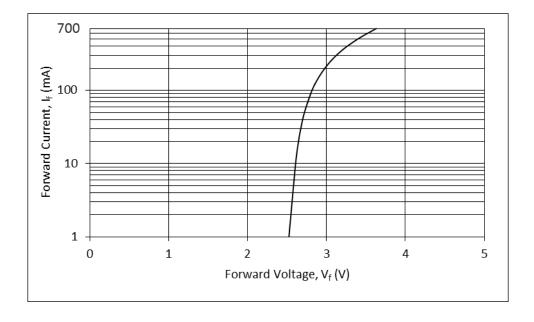


Figure 2: Forward Current vs. Forward Voltage ($T_i = 25^{\circ}C$)

BXCD 35 mil x 35 mil

Performance vs. Junction Temperature

The following curves represent typical performance of the BXCD3535 blue power die. Actual performance will vary slightly for different power, dominant wavelength and Vf bins.

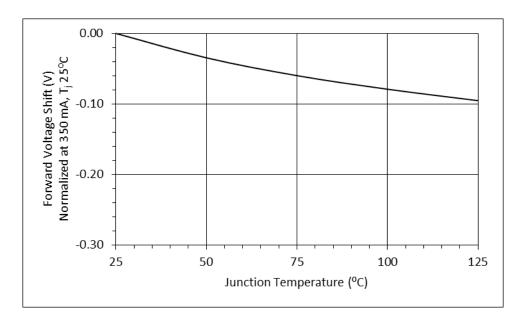


Figure 3: Forward Voltage Shift vs. Junction Temperature

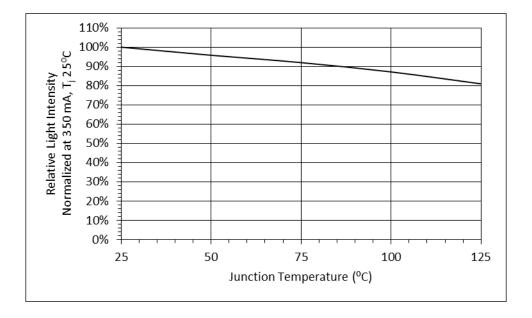


Figure 4: Relative Light Intensity vs. Junction Temperature

BXCD 35 mil x 35 mil

Wavelength Shift

The following curves represent typical performance of the BXCD3535 blue power die. Actual performance will vary slightly for different power, dominant wavelength and Vf bins.

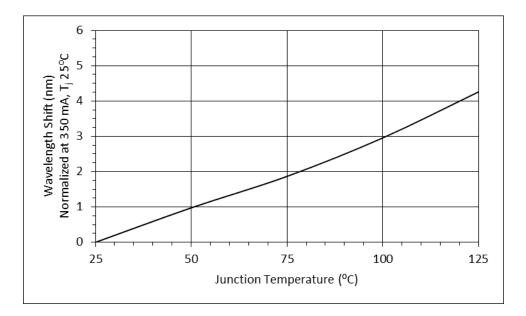
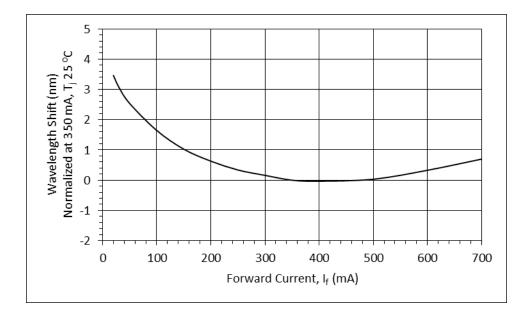
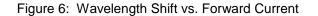




Figure 5: Wavelength Shift vs. Junction Temperature

Typical Radiation Pattern

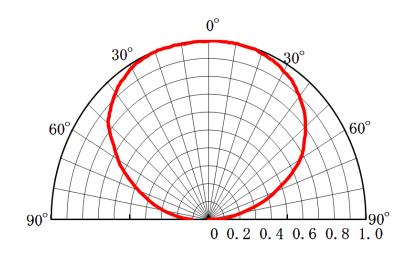


Figure 7: Typical Radiation Pattern (350 mA Operation)

Current De-rating Curves

At Bridgelux, we help companies, industries and people experience the power and possibility of light. Since 2002, we've designed LED solutions that are high performing, energy efficient, cost effective and easy to integrate. Our focus is on light's impact on human behavior, delivering products that create better environments, experiences and returns—both experiential and financial. And our patented technology drives new platforms for commercial and industrial luminaires.

For more information about the company, please visit bridgelux.com twitter.com/Bridgelux facebook.com/Bridgelux linkedin.com/company/Bridgelux-inc-_2 WeChat ID: BridgeluxInChina

© 2018 Bridgelux, Inc. All rights reserved. Product specifications are subject to change without notice.