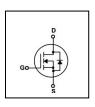


650V 12A N-Channel Enhancement Mode Power MOSFET

General Description

BXP12N65 is Bridgelux high voltage MOSFET family based on advanced planar DMOS technology. This advanced MOSFET family has optimized on-state resistance, and also provides superior switching performance and higher avalanche energy strength. This device family is suitable for high efficiency switch mode power supplies.


FEATURES

- RDSON≤0.8 Ω @Vgs=10V, Id=6A
- Excellent RDS(ON) and Low Gate Charge

Version: 1.2

- · Fast switching capability
- · Lead free product is acquired

SYMBOL

TO-220

TO-220F

ASSEMBLY MESSAGE

Product Name	Package	Packaging
BXP12N65P	TO-220	Tube
BXP12N65F	TO-220F	Tube

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise noted)

Parameter		O	Rating		1114
		Symbol	BXP12N65P	BXP12N65F	Unit
Drain-Source Voltage		V _{DSS}	650		V
Danier Occurrent	Continuous (T _C = 25°C)	I _D	12		Α
Drain Current	Continuous (T _C = 100°C)		7.7		А
Drain Current	Pulsed (Note1)	I _{DM}	48		А
Gate-Source Voltage		V _{GSS}	±30		V
Avalanche Energy	Single Pulse (Note2)	E _{AS}	900		mJ
	Repetitive (Note1)	E _{AR}	17		mJ
Avalanche Current (Note1)		I AR	12		Α
Peak Diode Recovery dv/dt (Note3)		dv/dt	4.5		V/ns
Power Dissipation (Not	e T _C =25°C	Б	192	51	W
2)	Derate above 25°C	P _D	1.54	0.41	W/°C
Maximum Junction Temperature		TJ	150		°C
Storage Temperature Range		Tstg	-55 to 150		°C

- Note: 1. Repetitive Rating: Pulse width limited by maximum junction temperature
 - 2. L=12.5mH, I_{AS} =12.0A, V_{DD} =50V, RG=25 Ω, Starting TJ = 25°C
 - 3. $I_{SD} \le 7.0 A$, di/dt $\le 300 A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting TJ = 25°C

THERMAL CHARACTERISTICS

Dovomotor	Symbol	Ma	l lmi4	
Parameter		BXP12N65P	BXP12N65F	Unit
Thermal Resistance, Junction-to-Case	R _{θJC}	0.65	2.45	°C / W
Thermal Resistance, Junction-to-Ambient	R _{θJA}	62.5	122	°C / W

$\textbf{ELECTRICAL CHARACTERISTICS} \hspace{0.1cm} (T_J = 25 ^{\circ}\!C, unless \hspace{0.1cm} otherwise \hspace{0.1cm} Noted)$

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
OFF CHARACTERISTICS		,		•		•
Drain-Source Breakdown Voltage	BV _{DSS}	VGS=0V, ID=250µA	650			V
Zero Gate Voltage Drain Current	I _{DSS}	VDS=650V, VGS=0V			1	uA
		VDS=520V, TC = 125°C			100	uA
Gate-Body Leakage Current, Forward		VGS=30V			100	nA
Gate-Body Leakage Current, Reverse	- I _{GSS}	VGS=-30V			-100	nA
Breakdown Voltage Temperature	△BVDSS/	ID 050A		0.68		N/I°C
Coefficient	△TJ	ID = 250 μA		0.00		V/℃
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GS(TH)}	VDS=VGS, ID=250μA	2		4	V
Drain-Source On-State Resistance	R _{DS(ON)}	VGS=10V, ID=6A		0.66	0.8	Ω
Forward Transconductance (Note4)	g FS	VDS = 50V, ID=6A		8.2		S
DYNAMIC PARAMETERS						
Input Capacitance	C _{ISS}	\/T-00=\/_\/\\000000		1550		pF
Output Capacitance	Coss	VDS=25V, VGS=0V, f=1.0MHz		168		pF
Reverse Transfer Capacitance	Crss			24		pF
SWITCHING PARAMETERS						
Turn-ON Delay Time	t _{D(ON)}	VDD-225V ID-424 VCC		72		ns
Turn-ON Rise Time	t _R	VDD=325V, ID=12A, VGS		121		ns
Turn-OFF Delay Time	t _{D(OFF)}	= 10V ,RG=10Ω (Note4,5)		232		ns
Turn-OFF Fall-Time	t⊧	(110(64,5)		99		ns
Total Gate Charge(Note5)	Q_{G}	VDS =520V, VGS =10V, ID		39		nC
Gate Source Charge	Q _{GS}	=12A		7.6		nC
Gate Drain Charge	Q_{GD}	(Note4,5)		14		nC
SOURCE- DRAIN DIODE RATINGS	AND CHARA	ACTERISTICS				
Drain-Source Diode Forward Voltage	V _{SD}	IS=12A, VGS=0V			1.4	V
Diode Continuous Forward Current	Is				12	Α
Pulsed Drain-Source Current	I _{SM}				48	Α
Reverse Recovery Time	t _{RR}	VGS = 0 V, ISD = 12A		490		ns
Reverse Recovery Charge	Q _{RR}	di/dt=100 A/µs (Note4,5)		4.95		uC

Note: 4. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2%

^{5.} Essentially independent of operating temperature

TYPICAL CHARACTERISTICS

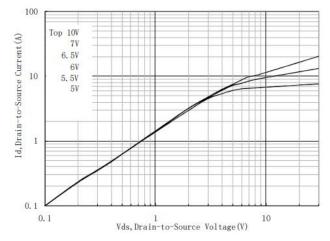
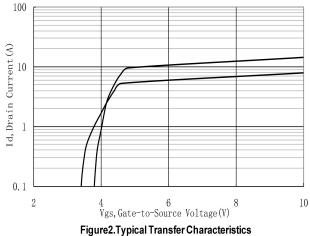



Figure 1.Typical Output Characteristics

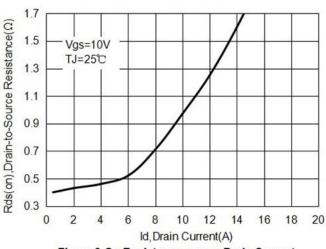


Figure 3.On-Resistance versus Drain Current

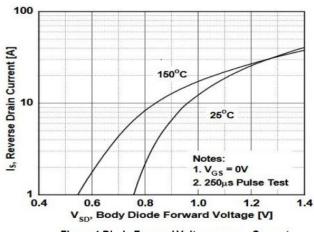


Figure 4. Diode Forward Voltage versus Current

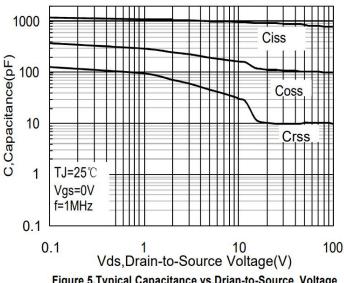


Figure 5. Typical Capacitance vs. Drian-to-Source Voltage

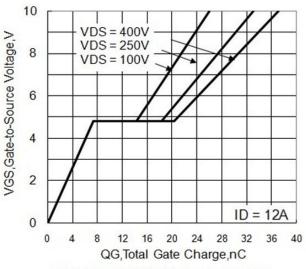


Figure 6. Typical Gate Charge vs. Vgs

TYPICAL CHARACTERISTICS(Cont.)

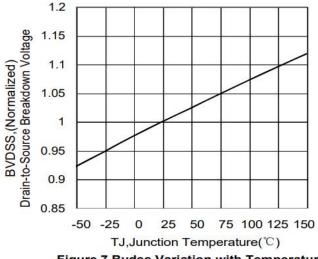


Figure 7.Bvdss Variation with Temperature

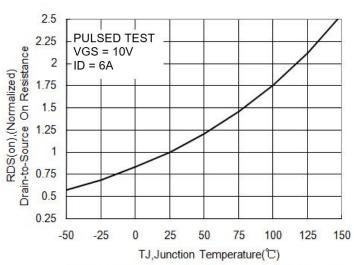


Figure 8.On-Resistance Variation with Temperature

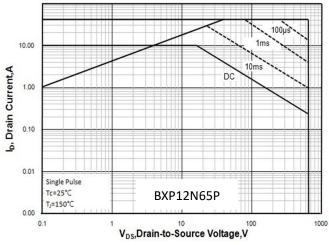


Figure 9. Maximum Safe Operating Area

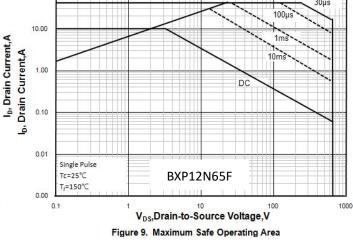
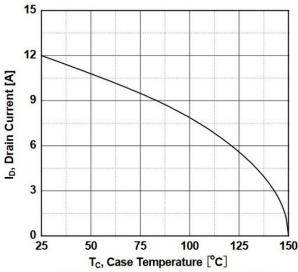
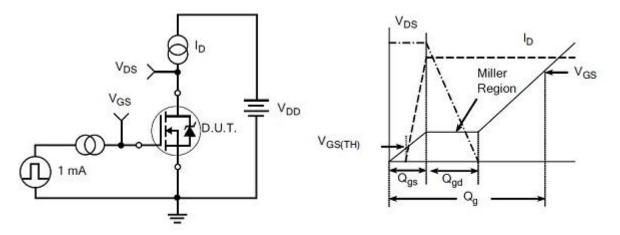
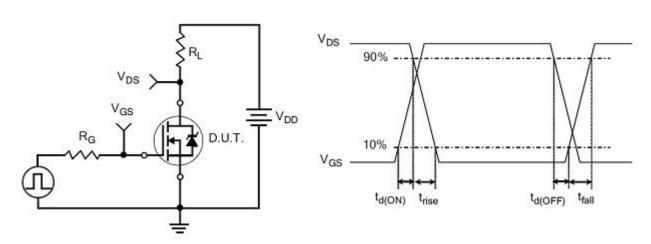


Figure 9. Maximum Safe Operating Area

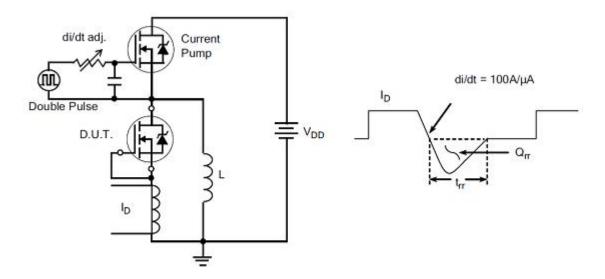




Figure 10. Maximum Continuous Drain Current vs Case Temperature

TEST CIRCUITS AND WAVEFORMS

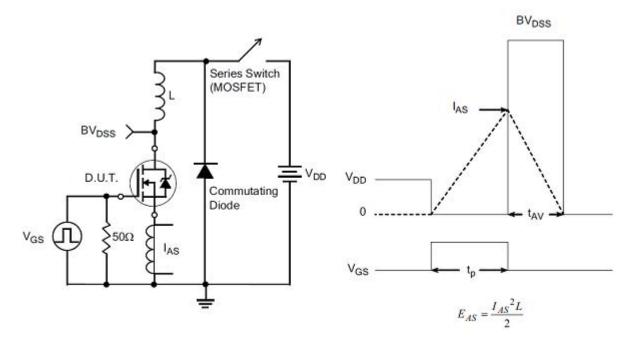
Gate Charge Test Circuit

Gate Charge Waveform



Resistive Switching Test Circuit

Resistive Switching Waveforms



TEST CIRCUITS AND WAVEFORMS(Cont.)

Diode Reverse Recovery Test Circuit

Diode Reverse Recovery Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

Revision history

Document revision history

Date	Revision	Changes
15-Mar-2021	1.0	First release
10-Dec-2021	1.1	Update layout format
10-Dec-2021	1.2	Update parameter

Disclaimers:

Bridgelux WuXi has made reasonable commercial efforts to ensure that the information given in this data sheet is correct. However, it must clearly be understood that such information is for guidance only and does not constitute any representation or form part of any offer or contract.

For documents and material available from this data sheet, Bridgelux WuXi does not warrant or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product, technology or process disclosed hereunder.

Bridgelux WuXi reserves the rights to at its own discretion to make any changes or improvements to this data sheet. Unless said data sheet is incorporated into the formal contract, any customer should not rely on the information as any specification or product parameters duly committed by Bridgelux WuXi. Customers are hereby advised to verify that the information contained herein is current and complete before the entering of any contract or acknowledgement of any purchase order. Accordingly, all products specified hereunder shall be sold subject to Bridgelux WuXi's terms and conditions supplied at the time of order acknowledgement. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

Bridgelux WuXi does not warrant or convey any license either expressed or implied under its patent rights, nor the rights of others. Reproduction of information contained herein shall be only permissible if such reproduction is without any modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. Bridgelux WuXi is not responsible or liable for such altered documentation.

Resale of Bridgelux WuXi's products with statements different from or beyond the parameters stated by Bridgelux WuXi for that product or service voids all express or implied warrantees for the associated Bridgelux WuXi's product or service and is unfair and deceptive business practice. Bridgelux WuXi is not responsible or liable for any such statements.

Bridgelux WuXi's products are not authorized for use as critical components in life support devices or systems without the express written approval of Bridgelux WuXi. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.