

Bridgelux® SMD 2835 0.2W 3V Thrive™

Product Data Sheet DS534

BXEN-27R 30R 35R 40R 50R 65R

SMD 2835 Thrive

Introduction

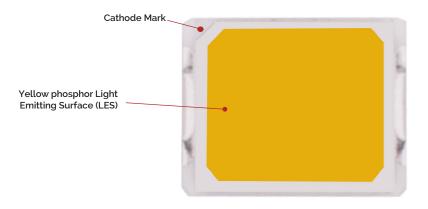
Bridgelux Thrive[™] combines unique chip, phosphor and packaging technology to closely match the spectra of natural light over the visible wavelength range. Thrive can be used in constant color point luminaires to bring full spectrum natural light indoors or in tunable white luminaires to incorporate circadian elements that may impact human well-being. The high fidelity spectral output of Thrive creates stunning environments with excellent color rendering and outstanding TM30 metrics. Thrive is available in both SMD components and LED arrays to enable a broad range of lighting applications including retail, hospitality, office, education, architectural, museums, healthcare and residential lighting.

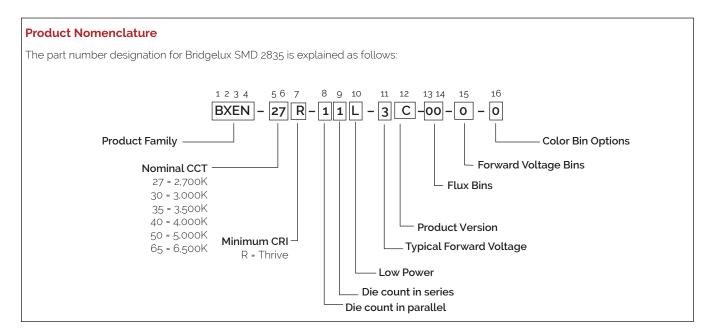
Features

- Engineered spectra to closely match natural light
- CRI > 90, R9 >50, high Rf and Rg values
- High efficiency full spectrum solution
- No violet chip augmentation
- Hot color targeted
- Industry standard 2835 footprint
- Broad product platform availability (SMDs and COBs)

Benefits

- Full consistent spectrum with fewer spectral spikes
- Natural and vivid color rendering
- Greater energy savings, lower utility costs
- Economical, high efficiency solution
- Uniform and consistent white light under application conditions
- Ease of design and rapid go-to-market
- Enables greater design flexibility and platform color consistency




Contents

Product Feature Map	2
Product Nomenclature	2
Product Test Conditions	2
Product Selection Guide	3
Spectrum Characteristics	4
Electrical Characteristics	5
Absolute Maximum Ratings	6
Product Bin Definitions	7
Performance Curves	10
Typical Radiation Pattern	11
Mechanical Dimensions	12
Reliability	13
Reflow Characteristics	14
Packaging	15
Design Resources	17
Precautions	17
Disclaimers	17
About Bridgelux	18

Product Feature Map

Bridgelux SMD LED products come in industry standard package sizes and follow ANSI binning standards. These LEDs are optimized for cost and performance, helping to ensure highly competitive system lumen per dollar performance while addressing the stringent efficacy and reliability standards required for modern lighting applications.

Product Test Conditions

Bridgelux SMD 2835 LEDs are tested and binned with a 10ms pulse of 60mA at T_j (junction temperature)-T_{sp} (solder point temperature) -25°C. Forward voltage and luminous flux are binned at a T_i-T_{sp}-25°C, while color is hot targeted at a T_{sp} of 85°C.

Product Selection Guide

The following product configurations are available:

	Nominal	CRI3-5 Drive		Forward Voltage ^{4.5} (V)		Typical Pulsed	Typical	Typical	
Part Number ¹⁶	(K)	CCT ² (min) (K)	Current (mA)	Min	Typical	Max	Flux (lm) ^{4.5}	Power (W)	Efficacy (lm/W)
BXEN-27R-11L-3C-00-0-0	2700	-	60	2.70	2.90	3.20	25.0	0.2	144
BXEN-30R-11L-3C-00-0-0	3000	-	60	2.70	2.90	3.20	26.0	0.2	149
BXEN-35R-11L-3C-00-0-0	3500	-	60	2.70	2.90	3.20	26.0	0.2	149
BXEN-40R-11L-3C-00-0-0	4000	-	60	2.70	2.90	3.20	27.5	0.2	158
BXEN-50R-11L-3C-00-0-0	5000	-	60	2.70	2.90	3.20	27.5	0.2	158
BXEN-65R-11L-3C-00-0-0	6500	-	60	2.70	2.90	3.20	27.5	0.2	158

Table 1: Selection Guide, Pulsed Measurement Data at 60mA (T_i=T_{sp}=25°C)

Table 2: Selection Guide, Pulsed Test Performance at 60mA (T_{sp} = 85°C)^{7.8}

Part Number ¹⁶	Nominal CCT ² (K)	CRI3.5 (min) Nominal Drive Current		Forv	vard Voltage (V)	5	Typical Pulsed Flux (lm)⁵	Typical Power	Typical Effi- cacy (lm/W)
		()	(mA)		Typical	Max	Min	(\\/)	
BXEN-27R-11L-3C-00-0-0	2700	90	60	2.63	2.83	3.13	22.2	0.2	131
BXEN-30R-11L-3C-00-0-0	3000	90	60	2.63	2.83	3.13	23.1	0.2	136
BXEN-35R-11L-3C-00-0-0	3500	90	60	2.63	2.83	3.13	23.1	0.2	136
BXEN-40R-11L-3C-00-0-0	4000	90	60	2.63	2.83	3.13	24.4	0.2	144
BXEN-50R-11L-3C-00-0-0	5000	90	60	2.63	2.83	3.13	24.4	0.2	144
BXEN-65R-11L-3C-00-0-0	6500	90	60	2.63	2.83	3.13	24.4	0.2	144

Notes for Tables 1 & 2:

- 1. The last 6 characters (including hyphens '-') refer to flux bins, forward voltage bins, and color bin options, respectively. "00-0-0" denotes the full distribution of flux, forward voltage, and 6 SDCM color.
- Example: BXEN-27R-11L-3C-00-0-0 refers to the full distribution of flux, forward voltage, and color within a 2700K 6-step ANSI standard chromaticity region with a minimum of 90 CRI, 1x1 die configuration, low power, 2.9V typical forward voltage.
- 2. Product CCT is hot targeted at T_{so} = 85°C. Nominal CCT as defined by ANSI C78.377-2011.
- 3. Listed CRIs are minimum values and include test tolerance.
- 4. Products tested under pulsed condition (10ms pulse width) at nominal drive current where T_i-T_{so}=25°C.
- 5. Bridgelux maintains a ±7.5% tolerance on luminous flux measurements, ±0.1V tolerance on forward voltage measurements, and ±2 tolerance on CRI measurements for the SMD 2835.
- 6. Refer to Table 5 and Table 6 for Bridgelux SMD 2835 Luminous Flux Binning and Forward Voltage Binning information.
- 7. Typical pulsed test performance values are provided as reference only and are not a guarantee of performance.
- 8. Typical performance is estimated based on operation under pulsed current with LED emitter mounted onto a heat sink with thermal interface material and the solder point temperature maintained at 85°C. Based on Bridgelux test setup, values may vary depending on the thermal design of the luminaire and/or the exposed environment to which the product is subjected.

Spectrum Characteristics

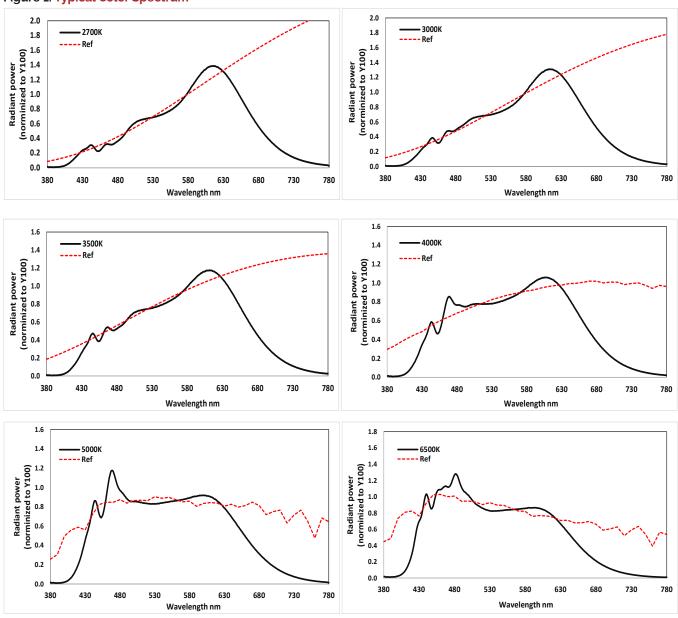


Figure 1: Typical Color Spectrum

Note for Figure 1:

1. Color spectra measured at typical current for T_{sp} = 85°C

2. Spectra are provided as reference only and are not a guarantee of performance

3. Spectra under different current will be different from the Spectra under typical current.

Spectral Matching to Natural Light

Humans have evolved and thrived for millions of years under the sun's natural daylight. While discussions continue regarding the development of LED products with artificial spectra aimed at increasing productivity and focus or helping with relaxation, the long-term physiological effects of such altered environments on humans remains unknown.

Bridgelux Thrive is engineered to provide the closest match to natural light using proprietary chip, phosphor and packaging technology. Bridgelux is working with our customers and industry partners to define new metrics to describe and quantify this spectral matching: going beyond today's quality of light metrics such as CRI and TM-30.

Electrical Characteristics

Table 3: Electrical Characteristics

	Drive Current	Fo	orward Voltag (V) ^{2,3}	je	Typical Temperature Coefficient	Typical Thermal	
Part Number ¹	(mA)	Minimum	um Typical Maximum		of Forward Voltage ∆V _r ∕∆T (mV∕°C)	Resistance Junction to Solder Point⁴ R _{j-sp} (°C∕W)	
BXEN-XXR-11L-3C-00-0-0	60	2.7	2.9	3.2	-1.14	27	

Notes for Table 3:

1.1. The last 6 characters (including hyphens '-') refer to flux bins, forward voltage bins, and color bin options, respectively. Example: BXEN-27R-11L-3C refers to the full distribution of flux, forward voltage, and color within a 2700K 7-step ANSI standard chromaticity region with a minimum of go CRI, 1x1 die configuration, low power, 2.9V typical forward voltage.

2. Bridgelux maintains a tolerance of ± 0.1V on forward voltage measurements. Voltage minimum and maximum values at the nominal drive current are guaranteed by 100% test.

3. Products tested under pulsed condition (10ms pulse width) at nominal drive current where Tsp = 25°C.

4. Thermal resistance value was calculated using total electrical input power; optical power was not subtracted from input power.

Absolute Maximum Ratings

Table 4: Maximum Ratings

Parameter	Maximum Rating		
LED Junction Temperature (T _j)	125°C		
Storage Temperature	-40°C to +105°C		
Operating Solder Point Temperature (T_{sp})	-40°C to +105°C		
Soldering Temperature	260°C or lower for a maximum of 10 seconds		
Maximum Drive Current	80mA		
Maximum Peak Pulsed Forward Current ¹	160mA		
Maximum Reverse Voltage ²	-		
Moisture Sensitivity Rating	MSL 3		
Electrostatic Discharge	2kV HBM. JEDEC-JS-001-HBM and JEDEC-JS-001-2012		

Notes for Table 4:

1. Bridgelux recommends a maximum duty cycle of 10% and pulse width of 10 ms when operating LED SMD at maximum peak pulsed current specified. Maximum peak pulsed current indicate values where LED SMD can be driven without catastrophic failures.

2. Light emitting diodes are not designed to be driven in reverse voltage and will not produce light under this condition. no rating is provided.

Product Bin Definitions

Table 5 lists the standard photometric luminous flux bins for Bridgelux SMD 2835 LEDs. Although several bins are listed, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all CCTs.

Bin Code Maximum Unit Condition Minimum 1A 22 24 1B 26 24 lm I_₅=60mA 1C 26 28 1D 28 30

Table 5: Luminous Flux Bin Definitions at 60mA, T_{sn}=25°C

Note for Table 5:

1. Bridgelux maintains a tolerance of ± 7.5% on luminous flux measurements.

Table 6: Forward Voltage Bin Definition at 60mA, T_{sn}=25°C

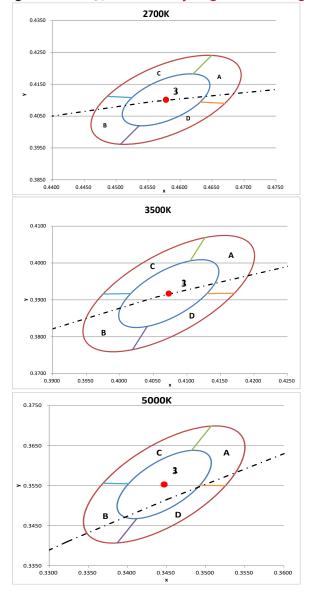
Bin Code	Minimum	Maximum	Unit	Condition
9	2.7	2.8		
A	2.8	2.9		
В	2.9	3.0	V	I _F =60mA
С	3.0	3.1		
D	3.1	3.2		

Note for Table 6:

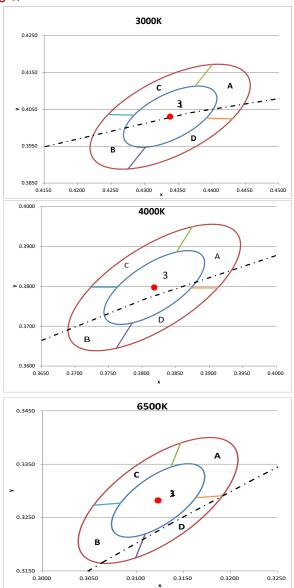
1. Bridgelux maintains a tolerance of ± 0.1V on forward voltage measurements.

Product Bin Definitions

Center Point Ellipse сст **Color Space** Major Axis **Minor** Axis Color Bin Rotation Angle Х 3 SDCM 53.70 3 0.00945 0.00490 0.4578 0.4101 2700K 6 SDCM 3/A/B/C/D 53.70 0.4578 0.4101 0.01620 0.00840 3 SDCM 53.22 3 0.4338 0.4030 0.00973 0.00476 3000K 3/A/B/C/D 6 SDCM 53.22 0.4338 0.4030 0.01668 0.00816 3 SDCM 3 54 0.4073 0.3917 0.01082 0.00483 3500K 6 SDCM 3/A/B/C/D 54 0.01854 0.00828 0.4073 0.3917 3 SDCM 53.72 3 0.3818 0.3797 0.01096 0.00469 4000K 6 SDCM 3/A/B/C/D 53.72 0.3818 0.01878 0.00804 0.3797 3 SDCM 59.62 3 0.00959 0.00413 0.3447 0.3553 5000K 6 SDCM 3/A/B/C/D 59.62 0.3447 0.3553 0.01644 0.00708 58.57 3 SDCM 3 0.3123 0.3282 0.00781 0.00333 6500K 6 SDCM 58.57 3/A/B/C/D 0.3123 0.3282 0.01338 0.00570


Table 7: MacAdam Ellipse Color Bin Definitions

Notes for Table 7:


1. Color binning at T_{so} =85°C unless otherwise specified

2. Bridgelux maintains a tolerance of ± 0.007 on x and y color coordinates in the CIE 1931 color space.

Product Bin Definitions

Figure 2: C.I.E. 1931 Chromaticity Diagram (Color Targeted at T_{sp} =85°C)

Performance Curves

Figure 3: Drive Current vs. Voltage (T_{sn}=25°C)

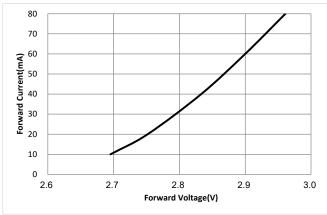


Figure 5: Typical Relative Flux vs. Solder Point Temperature^{2,3,4,5}

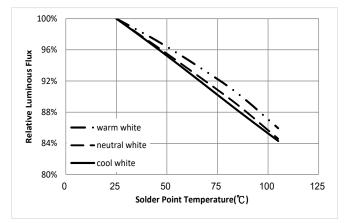
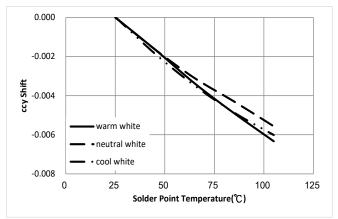
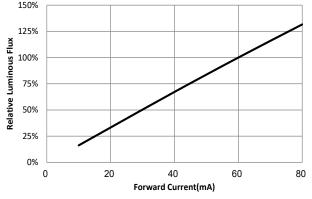
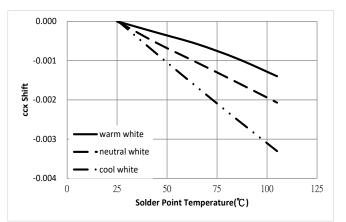
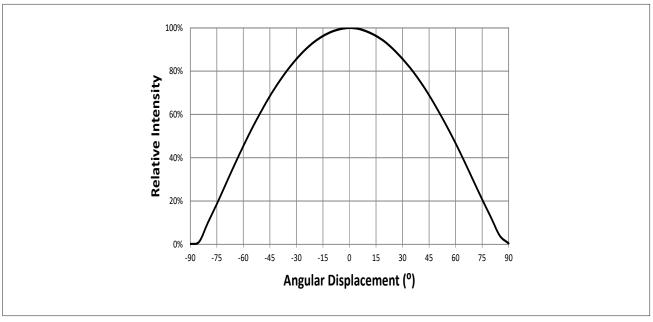




Figure 7: Typical ccy Shift vs. Solder Point Temperature^{2,3,4,5}

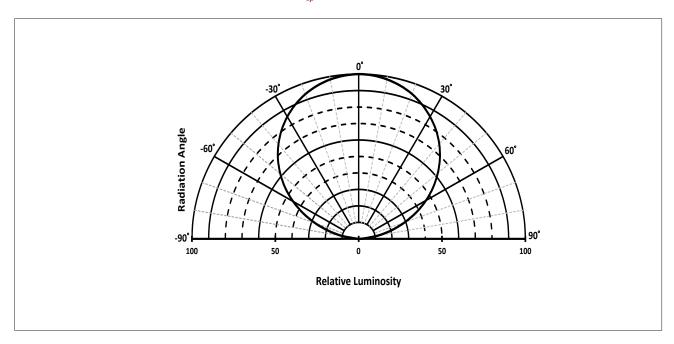




Note for Figures 3-7:

- 1. Bridgelux does not recommend driving low power LEDs at low currents. Doing so may produce unpredictable results. Pulse width modulation (PWM) is recommended for dimming effects.
- 2. Characteristics shown for warm white based on 2700K.
- 3. Characteristics shown for neutral white based on 4000K.
- 4. Characteristics shown for cool white based on 5000K.
- 5. For other color SKUs, the shift in color will vary. Please contact your Bridgelux Sales Representative for more information

Typical Radiation Pattern


Figure 8: Typical Spatial Radiation Pattern at 60mA, T_{sp} =25°C

Notes for Figure 8:

1. Typical viewing angle is 120°.

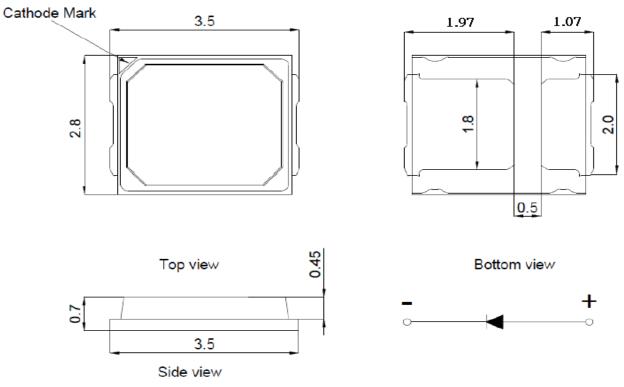
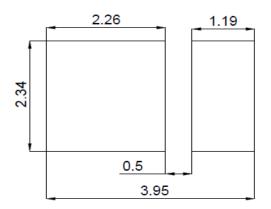

2. The viewing angle is defined as the off axis angle from the centerline where luminous intensity (Iv) is ½ of the peak value.

Figure 9: Typical Polar Radiation Pattern at 60mA, T_{sp}=25°C

Mechanical Dimensions

Figure 10: Drawing for SMD 2835


Notes for Figure 10:

1. Drawings are not to scale.

2. Drawing dimensions are in millimeters.

3. Unless otherwise specified, tolerances are ± 0.10mm.

Recommended PCB Soldering Pad Pattern

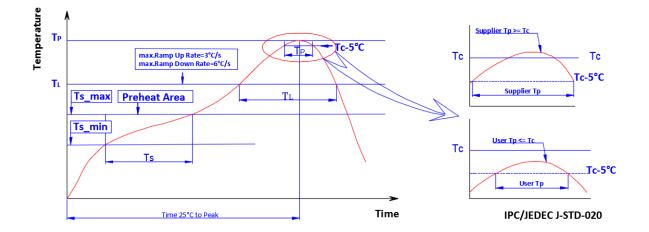
Reliability

Table 8: Reliability Test Items and Conditions

No .	Items	Reference Standard	Test Conditions	Drive Current	Test Duration	Units Failed/Tested
1	Moisture/Reflow Sensitivity	J-STD-020E	T _{sld} = 260°C, 10sec, Precondition: 60°C, 60%RH, 168hr	-	3 reflows	0/22
2	Low Temperature Storage	JESD22-A119	T _a =−40°C	-	1000 hours	0/22
3	High Temperature Storage	JESD22-A103D	T _a = 105°C	-	1000 hours	0/22
4	Low Temperature Operating Life	JESD22-A108D	T _a =−40°C	60mA	1000 hours	0/22
5	Temperature Humidity Operating Life	JESD22-A101C	T _{sp} =85°C, RH=85%	60mA	1000 hours	0/22
6	High Temperature Operating Life	JESD22-A108D	T _{sp} =105°C	80mA	1000 hours	0/22
7	Power switching	IEC62717:2014	T _{sp} = 105°C 30 sec on, 30 sec off	80mA	30000 cycles	0/22
8	Thermal Shock	JESD22-A106B	T _a =-40°C ~100°C; Dwell : 15min; Transfer: 10sec	-	200 cycles	0/22
9	Temperature Cycle	JESD22-A104E	T _a =-40°C ~100°C; Dwell at extreme temperature: 15min; Ramp rate < 105°C/min	_	200 cycles	0/22
10	Electrostatic Discharge	JS-001-2012	HBM, 2KV, 1.5kΩ, 100pF, Alternately positive or negative	-	-	0/22

Passing Criteria

Item	Symbol	Test Condition	Passing Criteria
Forward Voltage	Vf	60mA	Vf<10%
Luminous Flux	Fv	60mA	Fv<30%
Chromaticity Coordinates	(x, y)	60mA	u'v'<0.007


Notes for Table 8:

1. Measurements are performed after allowing the LEDs to return to room temperature

2. $\rm T_{sld}$: reflow soldering temperature; $\rm T_{a}$: ambient temperature

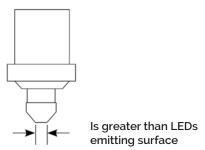
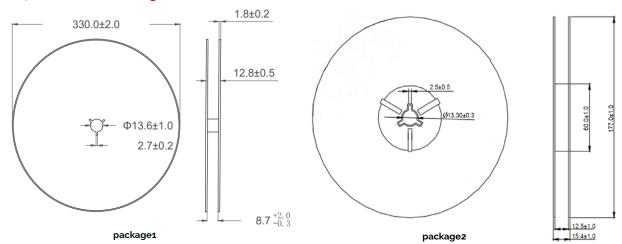

Reflow Characteristics

Figure 11 : Reflow Profile

Profile Feature	Lead Free Assembly	
Temperature Min. (Ts_min)	160°C	
Temperature Max. (Ts_max)	205°C	
Time (ts) from Ts_min to Ts_max	60-150 seconds	
Ramp-Up Rate (TL to Tp)	3 °C/second	
Liquidus Temperature (TL)	220 °C	
Time (TL) Maintained Above TL	60-150 seconds	
Peak Temp(Tp)	260 °C max.	
Time (Tp) Within 5 °C of the Specified Classification Temperature (Tc)	25 seconds max.	
Ramp-Down Rate (Tp to TL)	5 °C/second max.	
Time 25 °C to Peak Temperature	10 minutes max.	

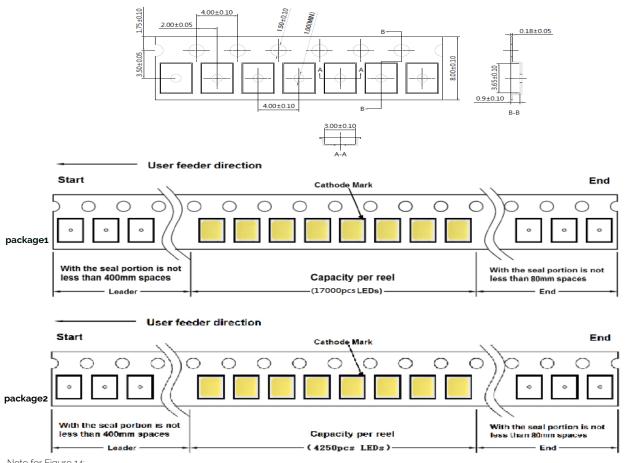
Figure 12: Pick and Place



Note for Figure 12:

1. When using a pick and place machine, choose a nozzle that has a larger diameter than the LED's emitting surface. Using a Pick-and-Place nozzle with a smaller diameter than the size of the LEDs emitting surface will cause damage and may also cause the LED to not illuminate.

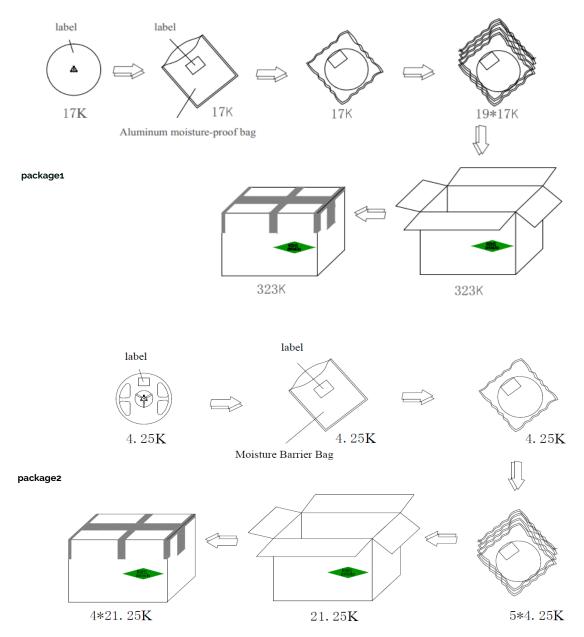
Packaging


Figure 13: Emitter Reel Drawings

Note for Figure 13:

1. Drawings are not to scale. Drawing dimensions are in millimeters.

Figure 14: Emitter Tape Drawings



Note for Figure 14:

1. Drawings are not to scale. Drawing dimensions are in millimeters.

Packaging

Figure 15: Emitter Reel Packaging Drawings

Note for Figure 15:

1. Drawings are not to scale.

Design Resources

Please contact your Bridgelux sales representative for assistance.

Precautions

CAUTION: CHEMICAL EXPOSURE HAZARD

Exposure to some chemicals commonly used in luminaire manufacturing and assembly can cause damage to the LED emitter. Please consult Bridgelux Application Note AN51 for additional information.

CAUTION: EYE SAFETY

Eye safety classification for the use of Bridgelux SMD LED emitter is in accordance with IEC specification EN62778: Application of IEC 62471 for the assessment of blue light hazard to light sources and luminaires are classified as Risk Group 1 when operated at or below the maximum drive current. Please use appropriate precautions. It is important that employees working with LEDs are trained to use them safely.

CAUTION: RISK OF BURN

Do not touch the SMD LED emitter during operation. Allow the emitter to cool for a sufficient period of time before handling. The SMD LED emitter may reach elevated temperatures such that could burn skin when touched.

Disclaimers

MINOR PRODUCT CHANGE POLICY

The rigorous qualification testing on products offered by Bridgelux provides performance assurance. Slight cosmetic changes that do not affect form, fit, or function may occur as Bridgelux continues product optimization.

CAUTION

CONTACT WITH LIGHT EMITTING SURFACE (LES)

Avoid any contact with the LES. Do not touch the LES of the emitter or apply stress to the LES (yellow phosphor resin area). Contact may cause damage to the emitter

Optics and reflectors must not be mounted in contact with the LES (yellow phosphor resin area).

STANDARD TEST CONDITIONS

Unless otherwise stated, LED emitter testing is performed at the nominal drive current.

About Bridgelux: Bridging Light and Life™

At Bridgelux, we help companies, industries and people experience the power and possibility of light. Since 2002, we've designed LED solutions that are high performing, energy efficient, cost effective and easy to integrate. Our focus is on light's impact on human behavior, delivering products that create better environments, experiences and returns—both experiential and financial. And our patented technology drives new platforms for commercial and industrial luminaires.

For more information about the company, please visit bridgelux.com twitter.com/Bridgelux facebook.com/Bridgelux linkedin.com/company/bridgelux-inc-_2 youtube.com/user/Bridgelux WeChat ID: BridgeluxInChina

46410 Fremont Boulevard Fremont, CA 94538 USA Tel (925) 583-8400 www.bridgelux.com

© 2021 Bridgelux, Inc. Product specifications are subject to change without notice. Bridgelux and the Bridgelux stylized logo design are registered trademarks of Bridgelux, Inc. Thrive is a trademark of Bridgelux, Inc. All other trademarks are the property of their respective owners.