

Bridgelux® Automotive 1x3

Product Data Sheet DS140

Introduction

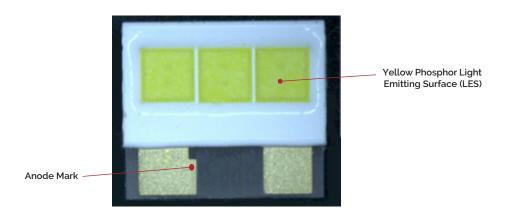
The new Bridgelux Automotive product offers superior performance, reliability, industry-leading output and thermal performance. Top electrical contacts and bottom thermal pads are designed to simplify lighting system integration and lower system assembly costs. This product is hot color targeted, which ensures that the LED s fall within specified color bins at typical application conditions of 85°C.

Features

- · Robust package on ceramic substrate
- · High flux output
- Industry-leading thermal performance
- · 8kV ESD protection
- Excellent corrosion resistance

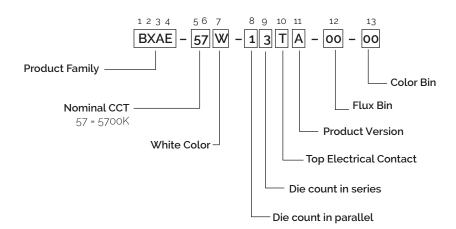
Benefits

- Simplified thermal management reduces system cost
- High flux output from small footprint reduces cost and improves design flexibility
- Higher drive current capability for increased flux output



Contents

Product Feature Map	2
Product Nomenclature	2
Product Test Conditions	2
Optical Characteristics	3
Electrical Characteristics	3
Product Bin Definitions	4
Performance Curves	6
Mechanical Dimensions	11
Reflowing Characteristics	12
Packaging	13
Design Resources	14
Precautions	14
Disclaimers	14
About Bridgelux	15


Product Feature Map

Bridgelux Automotive 1x3 products are robust and compact in size. These LEDs are optimized for performance and reliability, and are manufactured using high quality materials in order to ensure superior optical and thermal performance. The construction addresses the stringent reliability requirements of the automotive lighting industry.

Product Nomenclature

The part number designation for Bridgelux Automotive LED is as follows:

Product Test Conditions

Bridgelux Automotive 1x3 are tested and binned with a 10ms monopulse (MP) of 1000mA at T_j (junction temperature)= T_c (case temperature) =25°C. Luminous flux is binned at T_i = T_c =85°C, and color is hot targeted at T_i = T_c =85°C.

Product Selection Guide

The following product configurations are available:

Table 1: Optical Characteristics, Pulsed Measurement Data at 1000mA, 10ms MP (T_i=T_c=85°C) 9

Typical Flux		Correlated Color Tempera- ture ^{5,6,7}			Typical Total	Typical Viewing	
	Part Number 1.8 CRI 4.6.7		Minimum	Typical	Maximum	Included Angle ² $\theta_{o,gov}$ (°)	Angle³ θ _{1/2} (°)
BXAE-57W-13TA-00-00	60	870	5350K	5700K	6100K	140	120

Table 2: Electrical Characteristics, Pulsed Measurement Data at 1000mA, 10ms MP (T,=T_=85°C) 9

Part Number 18	Drive Current	Forward Voltage (V) ^{6,7} ve Current			Typical Temperature Coeffi- cient of Forward Voltage
Fait Nulliber	(mA)	Minimum	Typical	Maximum	∆V,∕∆T (mV∕°C)
BXAE-57W-13TA-00-00	1000	8.6	9.4	9.8	-5.5

Notes for Table 1 & 2:

- 1. The last 5 characters (including hyphens '-') refer to flux bins, and color bin options, respectively. "00-00" denotes the full distribution of flux, and the full color bin in CIE 1931 color space. See Table 4 and Figure 1 for color bin options.
- 2. Total angle at which 90% of total luminous flux is captured.
- 3. Viewing angle is the off axis angle from the LED centerline where the luminous intensity is ½ of the peak value.
- 4. Listed CRIs are minimum values and include test tolerance.
- 5. Product CCT is hot targeted at T_j = T_c = 85°C.
- 6. Bridgelux maintains a ±7.5% tolerance on luminous flux measurements, ±0.1V tolerance on forward voltage measurements, and ±2 tolerance on CRI measurements for the Automitive 1x3 products. The CRI and Voltage minimum and maximum values at the nominal drive current are guaranteed by 100% test.
- 7. Products tested under pulsed condition (10ms pulse width) at nominal drive current where $T_1 = T_c = 85^{\circ}C$.
- 8. Refer to Table 3 and Table 4 for Bridgelux Automitive 1x3 Luminous Flux Binning and Color Binning information.
- 9. Typical performance is tested based on operation under monopulsed with Automotive product mounted onto a heat sink with thermal interface material and the case temperature maintained at 85°C. Based on Bridgelux test setup, values may vary depending on the thermal design of the lighting system and/or the exposed environment to which the product is subjected.

Product Bin Definitions

Table 3 lists the standard photometric luminous flux bins for Bridgelux Automotive 1x3. Although several bins are listed, product availability in a particular bin varies by production run and by product performance.

Table 3: Luminous Flux Bin Definitions at 1000mA, 10ms MP ($T_{\rm j}$ = $T_{\rm c}$ =85°C)

Bin Code	Minimum	Maximum	Unit	Condition
3D	800	850		
3E	850	900		
3F	900	950	lm	
3G	950	1000	uii	I ^E =1000IIIA
3H	1000	1050		
3J	1050	1100		

Note for Table 3:

Table 4: Color code definitions for Bridgelux Automotive 1x3 at 1000mA, 10ms MP (T_i = T_c =85°C)

Bin Code	X	Υ
	0.3203	0.3301
	0.319	0.3458
E3	0.3277	0.3537
	0.3281	0.3372
	0.3285	0.3218
F.	0.3215	0.3152
E4	0.3203	0.3301
	0.3281	0.3372
	0.3281	0.3372
F	0.3277	0.3537
F3	0.3364	0.3614
	0.336	0.3443
F4	0.3356	0.3281
	0.3285	0.3218
	0.3281	0.3372
	0.336	0.3443

Notes for Table 4:

^{1.} Bridgelux maintains a tolerance of ± 7.5% on luminous flux measurements.

^{1.} Color binning at $T_i = T_c = 85^{\circ}C$

^{2.} Bridgelux maintains a tolerance of \pm 0.007 on x and y color coordinates in the CIE 1931 color space.

Product Bin Definitions

Figure 1: C.I.E. 1931 Chromaticity Diagram (Color Bin Structure, hot-color targeted at T_i=T_c=85°C)

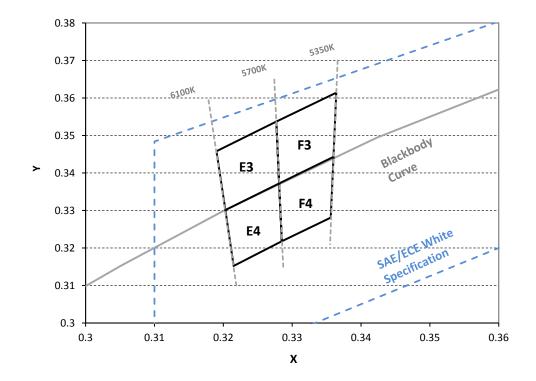


Figure 2: Drive Current vs. Voltage (T_i=T_c=85°C)

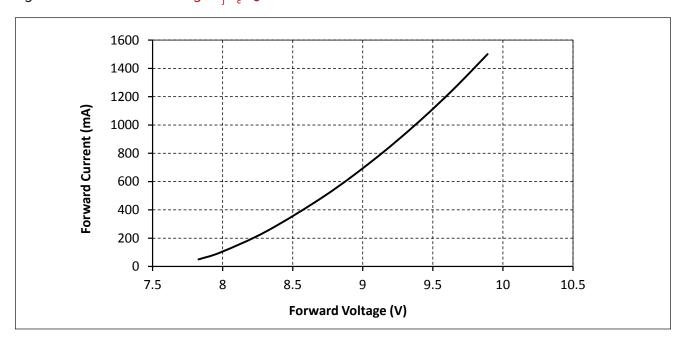
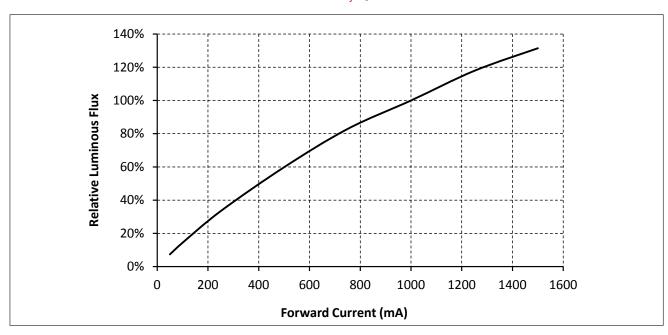



Figure 3: Typical Relative Luminous Flux vs. Drive Current (T_i=T_c=85°C)

Note for Figure 3:

1. Bridgelux does not recommend driving high power LEDs at low currents. Doing so may produce unpredictable results.

Figure 4: Typical Relative Flux vs. Case Temperature at 1000mA, 10ms MP (T_i=T_c=85°C)

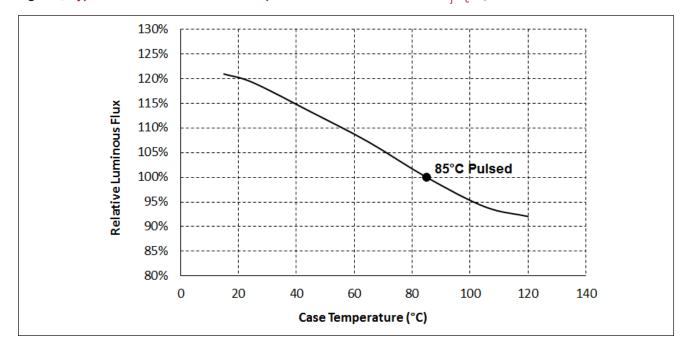


Figure 5: Typical ccx Shift vs. Case Temperature

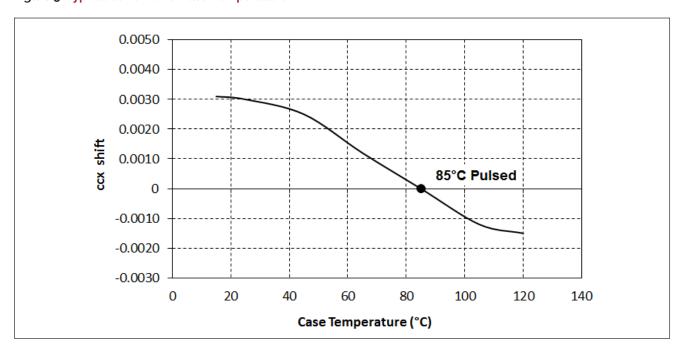


Figure 6: Typical ccy Shift vs.Case Temperature

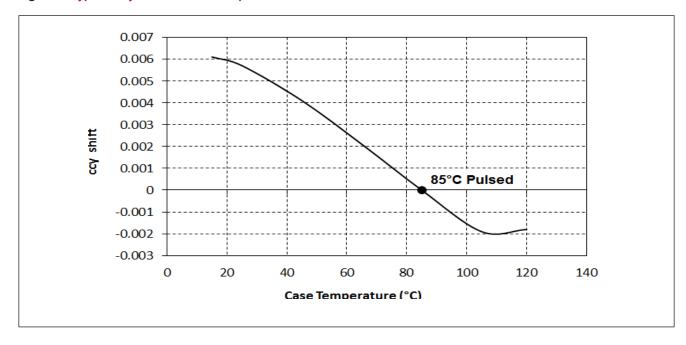


Figure 7: Typical Forward Voltage Shift vs. Case Temperature at 1000mA, 10ms MP

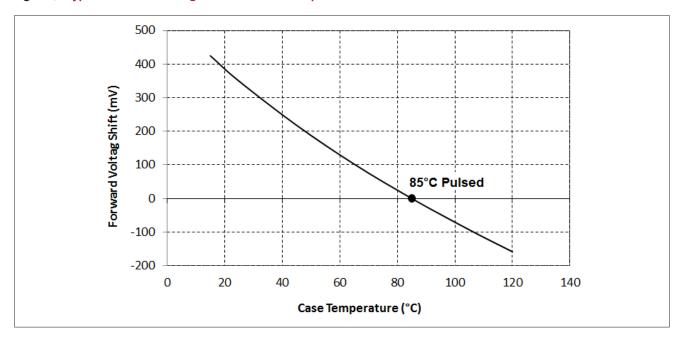


Figure 8: Maximum Forward Current vs. Case Temperature

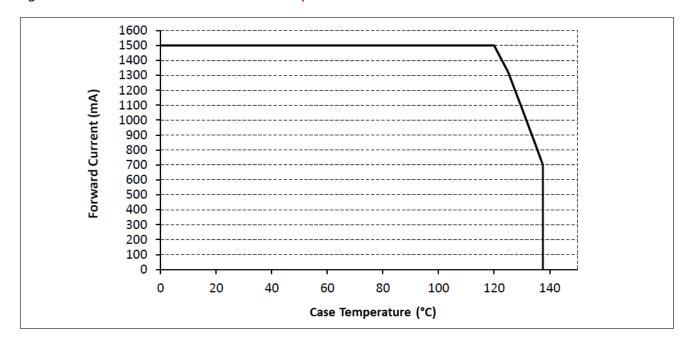


Figure 9: Typical Normalized Power vs. Wavelength at 1000mA, 10ms MP (T_i=T_c=85°C)

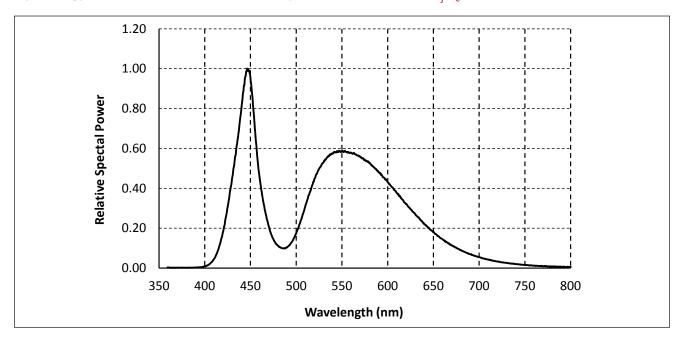


Figure 10: Typical Spatial Radiation Pattern at 1000mA, 10ms MP

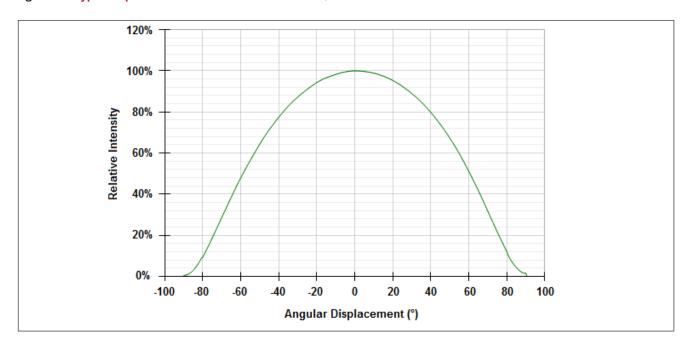
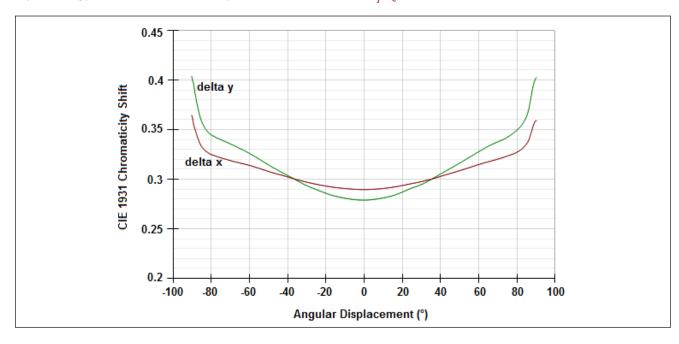
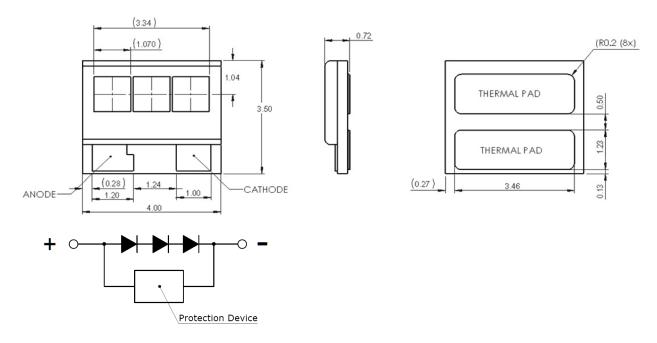
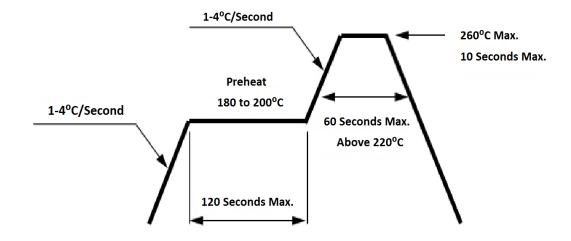




Figure 11: Typical Color Shift Over Angle at 1000mA, 10ms MP (T_i=T_c=85°C)

Mechanical Dimensions

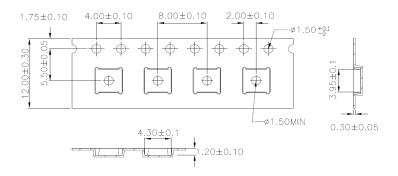
Figure 12: Drawing for Automotive LED



Notes for Figure 12:

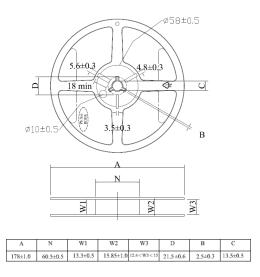
- 1. Drawings are not to scale.
- 2. Drawing dimensions are in millimeters.
- 3. Unless otherwise specified, tolerances are ± 0.10mm.

Reflowing Characteristics


Figure 13: Reflow Profile

Profile Feature	Lead Free Assembly
Preheat: Temperature Range	180°C - 200°C
Preheat: Time (Maximum)	120 seconds
Peak Temperature	260°C
Soldering Time (Maximum)	10 seconds
Allowable Reflow Cycles	2

Packaging


Figure 14: Emitter Tape Drawing

Note for Figure 14:

1. Drawings are not to scale. Drawing dimensions are in millimeters.

Figure 15: Emitter Reel Drawing

Note for Figure 15:

1. Drawings are not to scale. Drawing dimensions are in millimeters.

Design Resources

Please contact your Bridgelux sales representative for assistance.

Precautions

CAUTION: CHEMICAL EXPOSURE HAZARD

Exposure to some chemicals commonly used in Automotive lighting manufacturing and assembly can cause damage to the Automotive product.

CAUTION: EYE SAFETY

This Automotive LED package emits visible light, that, under certain circumstances, could be harmful to the eye. Proper safeguards must be used.

CAUTION: RISK OF BURN

Do not touch the Automotive product during operation. Allow the emitter to cool for a sufficient period of time before handling. The Automotive product may reach elevated temperatures such that could burn skin when touched.

CAUTION

CONTACT WITH LIGHT EMITTING SURFACE (LES)

Avoid any contact with the LES. Do not touch the LES of the emitter or apply stress to the LES (yellow phosphor resin area). Contact may cause damage to the emitter

Optics and reflectors must not be mounted in contact with the LES (yellow phosphor resin area).

Disclaimers

MINOR PRODUCT CHANGE POLICY

The rigorous qualification testing on products offered by Bridgelux provides performance assurance. Slight cosmetic changes that do not affect form, fit, or function may occur as Bridgelux continues product optimization.

STANDARD TEST CONDITIONS

Unless otherwise stated, Automotive product testing is performed at the nominal drive current.

About Bridgelux: We Build Light That Transforms

At Bridgelux, we help companies, industries and people experience the power and possibility of light. Since 2002, we've designed LED solutions that are high performing, energy efficient, cost effective and easy to integrate. Our focus is on light's impact on human behavior, delivering products that create better environments, experiences and returns—both experiential and financial. And our patented technology drives new platforms for commercial and industrial luminaires.

For more information about the company, please visit bridgelux.com
twitter.com/Bridgelux
facebook.com/Bridgelux
youtube.com/user/Bridgelux
WeChat ID: BridgeluxInChina

46430 Fremont Boulevard Fremont, CA 94538 Tel (925) 583-8400 www.bridgelux.com

© 2017 Bridgelux, Inc. All rights reserved 2017. Product specifications are subject to change without notice. Bridgelux and the Bridgelux stylized logo design are registered trademarks of Bridgelux, Inc. All other trademarks are the property of their respective owners.